skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: A Robust, Low-Cost and Secure Authentication Scheme for IoT Applications
The edge devices connected to the Internet of Things (IoT) infrastructures are increasingly susceptible to piracy. These pirated edge devices pose a serious threat to security, as an adversary can get access to the private network through these non-authentic devices. It is necessary to authenticate an edge device over an unsecured channel to safeguard the network from being infiltrated through these fake devices. The implementation of security features demands extensive computational power and a large hardware/software overhead, both of which are difficult to satisfy because of inherent resource limitation in the IoT edge devices. This paper presents a low-cost authentication protocol for IoT edge devices that exploits power-up states of built-in SRAM for device fingerprint generations. Unclonable ID generated from the on-chip SRAM could be unreliable, and to circumvent this issue, we propose a novel ID matching scheme that alleviates the need for enhancing the reliability of the IDs generated from on-chip SRAMs. Security and different attack analysis show that the probability of impersonating an edge device by an adversary is insignificant. The protocol is implemented using a commercial microcontroller, which requires a small code overhead. However, no modification of device hardware is necessary.  more » « less
Award ID(s):
1755733
PAR ID:
10220224
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Cryptography
Volume:
4
Issue:
1
ISSN:
2410-387X
Page Range / eLocation ID:
8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Things (IoT) is revolutionizing society by connect- ing people and devices seamlessly and providing enhanced user experience and functionalities. However, the unique properties of IoT networks, such as heterogeneity and non-standardized protocol, have created critical security holes and network mismanagement. We propose a new measurement tool for IoT network data to aid in analyzing and classifying such network traffic. We use evidence from both security and machine learning research, which suggests that the complexity of a dataset can be used as a metric to determine the trustworthiness of data. We test the complexity of IoT networks using Intrinsic Dimensionality (ID), a theoretical complexity mea- surement based on the observation that a few variables can often describe high dimensional datasets. We use ID to evaluate four mod- ern IoT network datasets empirically, showing that, for network and device-level data generated using IoT methodologies, the ID of the data fits into a low dimensional representation; this makes such data amenable to the use of machine learning algorithms for anomaly detection. 
    more » « less
  2. Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existing IoT devices. We implemented and evaluated SIA on a resource-constrained IoT device based on an MSP430 processor. Besides being secure, SIA is simple and efficient. We confirm the feasibility of SIA for resource-constrained IoT devices with experimental results of several intermittent computing applications. Our prototype implementation outperforms by two to three orders of magnitude the secure intermittent computing solution of Suslowicz et al. presented at IGSC 2018. 
    more » « less
  3. Recent advancements in energy-harvesting techniques provide an alternative to batteries for resource-constrained IoT devices and lead to a new computing paradigm, the intermittent computing model. In this model, a software module continues its execution from where it left off when an energy shortage occurred. Enforcing security of an intermittent software module is challenging because its power-off state has to be protected from a malicious adversary in addition to its power-on state, while the security mechanisms put in place must have a low overhead on the performance, resource consumption, and cost of a device. In this paper, we propose SIA (Secure Intermittent Architecture), a security architecture for resource-constrained IoT devices. SIA leverages low-cost security features available in commercial off-the-shelf microcontrollers to protect both the power-on and power-off state of an intermittent software module. Therefore, SIA enables a host of secure intermittent computing applications such as self-attestation, remote attestation, and secure communication. Moreover, our architecture provides confidentiality and integrity guarantees to an intermittent computing module at no cost compared to previous approaches in the literature that impose significant overheads. The salient characteristic of SIA is that it does not require any hardware modifications, and hence, it can be directly applied to existing IoT devices. We implemented and evaluated SIA on a resource-constrained IoT device based on an MSP430 processor. Besides being secure, SIA is simple and efficient. We confirm the feasibility of SIA for resource-constrained IoT devices with experimental results of several intermittent computing applications. Our prototype implementation outperforms by two to three orders of magnitude the secure intermittent computing solution of Suslowicz et al. presented at IGSC 2018. 
    more » « less
  4. With the rapid growth in the number of IoT devices that have wireless communication capabilities, and sensitive information collection capabilities, it is becoming increasingly necessary to ensure that these devices communicate securely with only authorized devices. A major requirement of this secure communication is to ensure that both the devices share a secret, which can be used for secure pairing and encrypted communication. Manually imparting this secret to these devices becomes an unnecessary overhead, especially when the device interaction is transient. In this paper, we empirically investigate the possibility of using an out-of-band communication channel -- vibration, generated by a custom smart ring, to share a secret with a smart IoT device. This exchanged secret can be used to bootstrap a secure wireless channel over which the devices can communicate. We believe that in future IoT devices can use such a technique to seamlessly connect with authorized devices with minimal user interaction overhead. In this paper, we specifically investigate (a) the feasibility of using vibration generated by a custom wearable for communication, (b) the effect of various parameters on this communication channel, and (c) the possibility of information manipulation by an adversary or information leakage to an adversary. For this investigation, we conducted a controlled study as well as a user study with 12 participants. In the controlled study, we could successfully share messages through vibrations with a bit error rate of less than 2.5%. Additionally, through the user study we demonstrate that it is possible to share messages with various types of objects accurately, quickly and securely as compared to several existing techniques. Overall, we find that in the best case we can exchange 85.9% messages successfully with a smart device. 
    more » « less
  5. Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU. 
    more » « less