skip to main content

Title: Performance Is Not Everything: Audio Feedback Preferred Over Visual Feedback for Grasping Task in Virtual Reality
In this work, we investigate the influence that audio and visual feedback have on a manipulation task in virtual reality (VR). Without the tactile feedback of a controller, grasping virtual objects using one’s hands can result in slower interactions because it may be unclear to the user that a grasp has occurred. Providing alternative feedback, such as visual or audio cues, may lead to faster and more precise interactions, but might also affect user preference and perceived ownership of the virtual hands. In this study, we test four feedback conditions for virtual grasping. Three of the conditions provide feedback for when a grasp or release occurs, either visual, audio, or both, and one provides no feedback for these occurrences. We analyze the effect each feedback condition has on interaction performance, measure their effect on the perceived ownership of the virtual hands, and gauge user preference. In an experiment, users perform a pick-and-place task with each feedback condition. We found that audio feedback for grasping is preferred over visual feedback even though it seems to decrease grasping performance, and found that there were little to no differences in ownership between our conditions.
Award ID(s):
Publication Date:
Journal Name:
Motion, Interaction and Games
Page Range or eLocation-ID:
1 to 6
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we investigate the influence of different visualizations on a manipulation task in virtual reality (VR). Without the haptic feedback of the real world, grasping in VR might result in intersections with virtual objects. As people are highly sensitive when it comes to perceiving collisions, it might look more appealing to avoid intersections and visualize non-colliding hand motions. However, correcting the position of the hand or fingers results in a visual-proprioceptive discrepancy and must be used with caution. Furthermore, the lack of haptic feedback in the virtual world might result in slower actions as a user might notmore »know exactly when a grasp has occurred. This reduced performance could be remediated with adequate visual feedback. In this study, we analyze the performance, level of ownership, and user preference of eight different visual feedback techniques for virtual grasping. Three techniques show the tracked hand (with or without grasping feedback), even if it intersects with the grasped object. Another three techniques display a hand without intersections with the object, called outer hand, simulating the look of a real world interaction. One visualization is a compromise between the two groups, showing both a primary outer hand and a secondary tracked hand. Finally, in the last visualization the hand disappears during the grasping activity. In an experiment, users perform a pick-and-place task for each feedback technique. We use high fidelity marker-based hand tracking to control the virtual hands in real time. We found that the tracked hand visualizations result in better performance, however, the outer hand visualizations were preferred. We also find indications that ownership is higher with the outer hand visualizations.« less
  2. Technological advancements and increased access have prompted the adoption of head- mounted display based virtual reality (VR) for neuroscientific research, manual skill training, and neurological rehabilitation. Applications that focus on manual interaction within the virtual environment (VE), especially haptic-free VR, critically depend on virtual hand-object collision detection. Knowledge about how multisensory integration related to hand-object collisions affects perception-action dynamics and reach-to-grasp coordination is needed to enhance the immersiveness of interactive VR. Here, we explored whether and to what extent sensory substitution for haptic feedback of hand-object collision (visual, audio, or audiovisual) and collider size (size of spherical pointers representing themore »fingertips) influences reach-to-grasp kinematics. In Study 1, visual, auditory, or combined feedback were compared as sensory substitutes to indicate the successful grasp of a virtual object during reach-to-grasp actions. In Study 2, participants reached to grasp virtual objects using spherical colliders of different diameters to test if virtual collider size impacts reach-to-grasp. Our data indicate that collider size but not sensory feedback modality significantly affected the kinematics of grasping. Larger colliders led to a smaller size-normalized peak aperture. We discuss this finding in the context of a possible influence of spherical collider size on the perception of the virtual object’s size and hence effects on motor planning of reach-to-grasp. Critically, reach-to-grasp spatiotemporal coordination patterns were robust to manipulations of sensory feedback modality and spherical collider size, suggesting that the nervous system adjusted the reach (transport) component commensurately to the changes in the grasp (aperture) component. These results have important implications for research, commercial, industrial, and clinical applications of VR.« less
  3. Geographical maps encoded with rainbow color scales are widely used for spatial data analysis in climate science, despite evidence from the visualization literature that they are not perceptually optimal. We present a controlled user study that compares the effect of color scales on performance accuracy for climate-modeling tasks using pairs of continuous geographical maps generated using climatological metrics. For each pair of maps, 39 scientist-observers judged: i) the magnitude of their difference, ii) their degree of spatial similarity, and iii) the region of greatest dissimilarity between them. Besides the rainbow color scale, two other continuous color scales were chosen suchmore »that all three of them covaried two dimensions (luminance monotonicity and hue banding), hypothesized to have an impact on visual performance. We also analyzed subjective performance measures, such as user confidence, perceived accuracy, preference, and familiarity in using the different color scales. We found that monotonic luminance scales produced significantly more accurate judgments of magnitude difference but were not superior in spatial comparison tasks, and that hue banding had differential effects based on the task and conditions. Scientists expressed the highest preference and perceived confidence and accuracy with the rainbow, despite its poor performance on the magnitude comparison tasks.« less
  4. A primary goal of the Virtual Reality ( VR ) community is to build fully immersive and presence-inducing environments with seamless and natural interactions. To reach this goal, researchers are investigating how to best directly use our hands to interact with a virtual environment using hand tracking. Most studies in this field require participants to perform repetitive tasks. In this article, we investigate if results of such studies translate into a real application and game-like experience. We designed a virtual escape room in which participants interact with various objects to gather clues and complete puzzles. In a between-subjects study, wemore »examine the effects of two input modalities (controllers vs. hand tracking) and two grasping visualizations (continuously tracked hands vs. virtual hands that disappear when grasping) on ownership, realism, efficiency, enjoyment, and presence. Our results show that ownership, realism, enjoyment, and presence increased when using hand tracking compared to controllers. Visualizing the tracked hands during grasps leads to higher ratings in one of our ownership questions and one of our enjoyment questions compared to having the virtual hands disappear during grasps as is common in many applications. We also confirm some of the main results of two studies that have a repetitive design in a more realistic gaming scenario that might be closer to a typical user experience.« less
  5. Many daily tasks involve the collaboration of both hands. Humans dexterously adjust hand poses and modulate the forces exerted by fingers in response to task demands. Hand pose selection has been intensively studied in unimanual tasks, but little work has investigated bimanual tasks. This work examines hand poses selection in a bimanual high-precision-screwing task taken from watchmaking. Twenty right-handed subjects dismounted a screw on the watch face with a screwdriver in two conditions. Results showed that although subjects used similar hand poses across steps within the same experimental conditions, the hand poses differed significantly in the two conditions. In themore »free-base condition, subjects needed to stabilize the watch face on the table. The role distribution across hands was strongly influenced by hand dominance: the dominant hand manipulated the tool, whereas the nondominant hand controlled the additional degrees of freedom that might impair performance. In contrast, in the fixed-base condition, the watch face was stationary. Subjects used both hands even though single hand would have been sufficient. Importantly, hand poses decoupled the control of task-demanded force and torque across hands through virtual fingers that grouped multiple fingers into functional units. This preference for bimanual over unimanual control strategy could be an effort to reduce variability caused by mechanical couplings and to alleviate intrinsic sensorimotor processing burdens. To afford analysis of this variety of observations, a novel graphical matrix-based representation of the distribution of hand pose combinations was developed. Atypical hand poses that are not documented in extant hand taxonomies are also included. NEW & NOTEWORTHY We study hand poses selection in bimanual fine motor skills. To understand how roles and control variables are distributed across the hands and fingers, we compared two conditions when unscrewing a screw from a watch face. When the watch face needed positioning, role distribution was strongly influenced by hand dominance; when the watch face was stationary, a variety of hand pose combinations emerged. Control of independent task demands is distributed either across hands or across distinct groups of fingers.« less