skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unitary signings and induced subgraphs of Cayley graphs of $\mathbb{Z}_2^{n}$
Boolean functions play an important role in many different areas of computer science. The _local sensitivity_ of a Boolean function $$f:\{0,1\}^n\to \{0,1\}$$ on an input $$x\in\{0,1\}^n$$ is the number of coordinates whose flip changes the value of $f(x)$, i.e., the number of i's such that $$f(x)\not=f(x+e_i)$$, where $$e_i$$ is the $$i$$-th unit vector. The _sensitivity_ of a Boolean function is its maximum local sensitivity. In other words, the sensitivity measures the robustness of a Boolean function with respect to a perturbation of its input. Another notion that measures the robustness is block sensitivity. The _local block sensitivity_ of a Boolean function $$f:\{0,1\}^n\to \{0,1\}$ on an input $$x\in\{0,1\}^n$$ is the number of disjoint subsets $$I$$ of $$\{1,..,n\}$$ such that flipping the coordinates indexed by $$I$$ changes the value of $f(x)$$, and the _block sensitivity_ of $$f$$ is its maximum local block sensitivity. Since the local block sensitivity is at least the local sensitivity for any input $$x$$, the block sensitivity of $$f$$ is at least the sensitivity of $$f$$.The next example demonstrates that the block sensitivity of a Boolean function is not linearly bounded by its sensitivity. Fix an integer $$k\ge 2$$ and define a Boolean function $$f:\{0,1\}^{2k^2}\to\{0,1\}$$ as follows: the coordinates of $$x\in\{0,1\}^{2k^2}$$ are split into $$k$$ blocks of size $2k$ each and $f(x)=1$ if and only if at least one of the blocks contains exactly two entries equal to one and these entries are consecutive. While the sensitivity of the function $$f$$ is $2k$, its block sensitivity is $k^2$. The Sensitivity Conjecture, made by Nisan and Szegedy in 1992, asserts that the block sensitivity of a Boolean function is polynomially bounded by its sensivity. The example above shows that the degree of such a polynomial must be at least two.The Sensitivity Conjecture has been recently proven by Huang in [Annals of Mathematics 190 (2019), 949-955](https://doi.org/10.4007/annals.2019.190.3.6). He proved the following combinatorial statement that implies the conjecture (with the degree of the polynomial equal to four): any subset of more than half of the vertices of the $$n$$-dimensional cube $$\{0,1\}^n$$ induces a subgraph that contains a vertex with degree at least $$\sqrt{n}$$. The present article extends this result as follows: every Cayley graph with the vertex set $$\{0,1\}^n$$ and any generating set of size $$d$$ (the vertex set is viewed as a vector space over the binary field) satisfies that any subset of more than half of its vertices induces a subgraph that contains a vertex of degree at least $$\sqrt{d}$$. In particular, when the generating set consists of the $$n$$ unit vectors, the Cayley graph is the $$n$$-dimensional hypercube.  more » « less
Award ID(s):
1855464
PAR ID:
10220429
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in Combinatorics
ISSN:
2517-5599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The noise sensitivity of a Boolean function f: {0,1}^n - > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O'Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/- epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias. 
    more » « less
  2. null (Ed.)
    The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017). 
    more » « less
  3. The noise sensitivity of a Boolean function f:{0,1}n→{0,1} is one of its fundamental properties. A function of a positive noise parameter δ, it is denoted as NSδ[f]. Here we study the algorithmic problem of approximating it for monotone f, such that NSδ[f]≥1/nC for constant C, and where δ satisfies 1/n≤δ≤1/2. For such f and δ, we give a randomized algorithm performing O(min(1,n√δlog1.5n)NSδ[f]poly(1ϵ)) queries and approximating NSδ[f] to within a multiplicative factor of (1±ϵ). Given the same constraints on f and δ, we also prove a lower bound of Ω(min(1,n√δ)NSδ[f]⋅nξ) on the query complexity of any algorithm that approximates NSδ[f] to within any constant factor, where ξ can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield previously unknown lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias. 
    more » « less
  4. The seminal result of Kahn, Kalai and Linial shows that a coalition of O(n/(log n)) players can bias the outcome of any Boolean function {0,1}^n -> {0,1} with respect to the uniform measure. We extend their result to arbitrary product measures on {0,1}^n, by combining their argument with a completely different argument that handles very biased input bits. We view this result as a step towards proving a conjecture of Friedgut, which states that Boolean functions on the continuous cube [0,1]^n (or, equivalently, on {1,...,n}^n) can be biased using coalitions of o(n) players. This is the first step taken in this direction since Friedgut proposed the conjecture in 2004. Russell, Saks and Zuckerman extended the result of Kahn, Kalai and Linial to multi-round protocols, showing that when the number of rounds is o(log^* n), a coalition of o(n) players can bias the outcome with respect to the uniform measure. We extend this result as well to arbitrary product measures on {0,1}^n. The argument of Russell et al. relies on the fact that a coalition of o(n) players can boost the expectation of any Boolean function from epsilon to 1-epsilon with respect to the uniform measure. This fails for general product distributions, as the example of the AND function with respect to mu_{1-1/n} shows. Instead, we use a novel boosting argument alongside a generalization of our first result to arbitrary finite ranges. 
    more » « less
  5. On the Rational Degree of Boolean Functions and Applications Vishnu Iyer, Siddhartha Jain, Matt Kovacs-Deak, Vinayak M. Kumar, Luke Schaeffer, Daochen Wang, Michael Whitmeyer We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions f, it is conjectured that rdeg(f) is polynomially related to deg(f), where deg(f) is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least deg(f)/2 and monotone functions have rational degree at least sqrt(deg(f)). We observe that both of these lower bounds are tight. In addition, we show that all read-once depth-d Boolean formulae have rational degree at least Ω(deg(f)1/d). Furthermore, we show that almost every Boolean function on n variables has rational degree at least n/2−O(sqrt(n)). In contrast to total functions, we exhibit partial functions that witness unbounded separations between rational and approximate degree, in both directions. As a consequence, we show that for quantum computers, post-selection and bounded-error are incomparable resources in the black-box model. 
    more » « less