skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explaining and Fixing DFT Failures for Torsional Barrier
Most torsional barriers are predicted with high accuracies (about 1 kJ/mol) by standard semilocal functionals, but a small subset was found to have much larger errors. We created a database of almost 300 carbon–carbon torsional barriers, including 12 poorly behaved barriers, that stem from the Y═C—X group, where Y is O or S and X is a halide. Functionals with enhanced exchange mixing (about 50%) worked well for all barriers. We found that poor actors have delocalization errors caused by hyperconjugation. These problematic calculations are density-sensitive (i.e., DFT predictions change noticeably with the density), and using HF densities (HF-DFT) fixes these issues. For example, conventional B3LYP performs as accurately as exchange-enhanced functionals if the HF density is used. For long-chain conjugated molecules, HF-DFT can be much better than exchange-enhanced functionals. We suggest that HF-PBE0 has the best overall performance.  more » « less
Award ID(s):
1856165
PAR ID:
10220443
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The journal of physical chemistry letters
Issue:
12
ISSN:
1948-7185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to H2+ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme’s D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 data sets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost by using Hartree–Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100% HF at large distances suffer much less from this effect. 
    more » « less
  2. Kohn–Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree–Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl– radical, illustrate just how accurate HF-DFT is. 
    more » « less
  3. Recently, the application of transition metal mononitrides (TMNs) to plasmonics and nonlinear optics has grown at an astounding rate. TiN and ZrN have emerged as the dominating materials in this direction. However, even though ZrN is reported to have lower dielectric losses and enhanced tunability in plasmonic applications when compared with TiN, the body of work regarding TiN is much more mature than that of ZrN. This imbalance of work regarding ZrN may be in part an effect of pollution in precursor materials for the fabrication of ZrN, leading to an increased imaginary part of permittivity and frustration in reproduction of ZrN with literature‐like properties. Herein, the effects of Hf defects (a common pollutant in Zr) on the optical properties of nitride films grown with radio frequency (RF) magnetron sputtering are reported. Hf defects are introduced into nitride films with a sputtering target made of the Hf‐polluted “grade 702” Zr alloy. Hf defects are found in all analyzed films with concentrations at around ≈0.5−1 at %. Chemical, structural, and optical properties of RF magnetron‐sputtered Hfx:ZryNzfilms (x ≪ y,z) are characterized and discussed. 
    more » « less
  4. We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory [SAPT(DFT)] description of monomers. The implementation adopts a density-fitting treatment of hybrid exchange–correlation kernels to enable the description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111 (2005)]. We have improved the algorithm by increasing numerical stability with QR factorization and optimized the computation of the exchange–correlation kernel with its 2-index density-fitted representation. The algorithm scales as O( N 5 ) formally and is usable for systems with up to ∼3000 basis functions, as demonstrated for the C 60 –buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials obtained from the local Hartree–Fock (LHF) method while avoiding the lower-scaling [ O( N 4 )] but iterative and sometimes hard-to-converge LHF process. The hybrid-kernel algorithm outperforms Hartree–Fock-based SAPT (SAPT0) for the S66 test set, and its accuracy is comparable to the many-body perturbation theory based SAPT2+ approach, which scales as O( N 7 ), although SAPT2+ exhibits a more narrow distribution of errors. 
    more » « less
  5. This study explores open shell biradical and polyradical molecular compounds based on extended multireference (MR) methods (MR-configuration interaction with singles and doubles (CISD) and MR-averaged quadratic coupled cluster (AQCC) approach) using the numbers of unpaired densities NU. These results were used to guide the analysis of the fractional occupation number weighted density (FOD) calculated within the finite temperature (FT) density functional theory (DFT) approach. As critical test examples, the dissociation of carbon-carbon (CC) single, double and triple bonds, and a benchmark set of polycyclic aromatic hydrocarbons (PAHs) has been chosen. By examining single, double, and triple bond dissociations, we demonstrate the utility and accuracy but also limitations of the FOD analysis for describing these dissociation processes. In significant extension of previous work (Phys Chem Chem Phys 25: 27380-27393) the assessment of FOD applications for different classes of DFT functionals was performed examining the range-separated functionals ωB97XD, ωB97M-V, CAM-B3LYP, LC-ωPBE, and MN12-SX, the hybrid (M06-2X) functional and the double hybrid (B2P-LYP) functional. In all cases, strong correlations between NFOD and NU values are found. The major task was to develop a new linear regression formula for range-separated functionals allowing a convenient determination of the optimal electronic temperature Tel for the FT-DFT calculation. We also established an optimal temperature for the semi-empirical extended tight-binding GFN2-xTB method. These findings significantly broaden the applicability of FOD analysis across various DFT functionals and semi-empirical methods. 
    more » « less