skip to main content


Title: Implementation of symmetry-adapted perturbation theory based on density functional theory and using hybrid exchange–correlation kernels for dispersion terms
We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory [SAPT(DFT)] description of monomers. The implementation adopts a density-fitting treatment of hybrid exchange–correlation kernels to enable the description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111 (2005)]. We have improved the algorithm by increasing numerical stability with QR factorization and optimized the computation of the exchange–correlation kernel with its 2-index density-fitted representation. The algorithm scales as O( N 5 ) formally and is usable for systems with up to ∼3000 basis functions, as demonstrated for the C 60 –buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials obtained from the local Hartree–Fock (LHF) method while avoiding the lower-scaling [ O( N 4 )] but iterative and sometimes hard-to-converge LHF process. The hybrid-kernel algorithm outperforms Hartree–Fock-based SAPT (SAPT0) for the S66 test set, and its accuracy is comparable to the many-body perturbation theory based SAPT2+ approach, which scales as O( N 7 ), although SAPT2+ exhibits a more narrow distribution of errors.  more » « less
Award ID(s):
1955940
NSF-PAR ID:
10353746
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
2
ISSN:
0021-9606
Page Range / eLocation ID:
024801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results. 
    more » « less
  2. Abstract

    We present a graph‐theoretic approach to adaptively compute many‐body approximations in an efficient manner to perform (a) accurate post‐Hartree–Fock (HF) ab initio molecular dynamics (AIMD) at density functional theory (DFT) cost for medium‐ to large‐sized molecular clusters, (b) hybrid DFT electronic structure calculations for condensed‐phase simulations at the cost of pure density functionals, (c) reduced‐cost on‐the‐fly basis extrapolation for gas‐phase AIMD and condensed phase studies, and (d) accurate post‐HF‐level potential energy surfaces at DFT cost for quantum nuclear effects. The salient features of our approach are ONIOM‐like in that (a) the full system (cluster or condensed phase) calculation is performed at a lower level of theory (pure DFT for condensed phase or hybrid DFT for molecular systems), and (b) this approximation is improved through a correction term that captures all many‐body interactions up to any given order within a higher level of theory (hybrid DFT for condensed phase; CCSD or MP2 for cluster), combined through graph‐theoretic methods. Specifically, a region of chemical interest is coarse‐grained into a set of nodes and these nodes are then connected to form edges based on a given definition of local envelope (or threshold) of interactions. The nodes and edges together define a graph, which forms the basis for developing the many‐body expansion. The methods are demonstrated through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments, (b) potential energy surface calculations on one‐dimensional water chains such as those found in ion channels, and (c) conformational stabilization and lattice energy studies on homogeneous and heterogeneous surfaces of water with organic adsorbates using two‐dimensional periodic boundary conditions.

     
    more » « less
  3. Second-order Møller–Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeling problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description of van der Waals (London) dispersion interactions and reaction thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme's D3 formalism, replaces the uncoupled Hartree–Fock dispersion inherent in MP2 with a more robust coupled Kohn–Sham treatment. The spin-component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model. This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models where completely different spin-scaling parameters were needed for describing reaction energies versus intermolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interactions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and ωB97M-V for systems with ∼100 atoms. 
    more » « less
  4. Nitroxyl (HNO) and hydrogen peroxide have both been implicated in a variety of reactions relevant to environmental and physiological processes and may contribute to a unique, unexplored, pathway for the production of nitrous acid (HONO) in soil. To investigate the potential for this reaction, we report an in-depth investigation of the reaction pathway of H 2 O 2 and HNO forming HONO and water. We find the breaking of the peroxide bond and a coupled proton transfer in the first step leads to hydrogen nitryl (HNO 2 ) and an endogenous water, with an extrapolated NEVPT2 (multireference perturbation theory) barrier of 29.3 kcal mol −1 . The first transition state is shown to possess diradical character linking the far peroxide oxygen to the bridging, reacting, peroxide oxygen. The energy of this first step, when calculated using hybrid density functional theory, is shown to depend heavily on the amount of Hartree–Fock exchange in the functional, with higher amounts leading to a higher barrier and more diradical character. Additionally, high amounts of spin contamination cause CCSD(T) to significantly overestimate the TS1 barrier with a value of 36.2 kcal mol −1 when using the stable UHF wavefunction as the reference wavefunction. However, when using the restricted Hartree–Fock reference wavefunction, the TS1 CCSD(T) energy is lowered to yield a barrier of 31.2 kcal mol −1 , in much better agreement with the NEVPT2 result. The second step in the reaction is the isomerization of HNO 2 to trans -HONO through a Grotthuss-like mechanism accepting a proton from and donating a proton to the endogenous water. This new mechanism for the isomerization of HNO 2 is shown to have an NEVPT2 barrier of 23.3 kcal mol −1 , much lower than previous unimolecular estimates not including an explicit water. Finally, inclusion of an additional explicit water is shown to lower the HNO 2 isomerization barrier even further. 
    more » « less
  5. In Density Functional Theory (DFT) direct dynamics simulations with Unrestricted Hartree Fock (UHF) theory, triplet instability often emerges when numerically integrating a classical trajectory. A broken symmetry initial guess for the wave function is often used to obtain the unrestricted DFT potential energy surface (PES), but this is found to be often insufficient for direct dynamics simulations. An algorithm is described for obtaining smooth transitions between the open‐shell and the closed‐shell regions of the unrestricted PES, and thus stable trajectories, for direct dynamics simulations of dioxetane and its •OCH2‐CH2O• singlet diradical. © 2018 Wiley Periodicals, Inc.

     
    more » « less