Abstract Physics-informed machine learning (PIML), the combination of prior physics knowledge with data-driven machine learning models, has emerged as an effective means of mitigating a shortage of training data, increasing model generalizability, and ensuring physical plausibility of results. In this paper, we survey a wide variety of recent works in PIML and summarize them from three key aspects: 1) motivations of PIML, 2) physics knowledge in PIML, and 3) methods of physics knowledge integration in PIML. We additionally discuss current challenges and corresponding research opportunities in PIML.
more »
« less
Kohn-Sham equations as regularizer: building prior knowledge into machine-learned physics
Including prior knowledge is important for effective machine learning models in physics, and is usually achieved by explicitly adding loss terms or constraints on model architectures. Prior knowledge embedded in the physics computation itself rarely draws attention. We show that solving the Kohn-Sham equations when training neural networks for the exchange-correlation functional provides an implicit regularization that greatly improves generalization. Two separations suffice for learning the entire one-dimensional H2 dissociation curve within chemical accuracy, including the strongly correlated region. Our models also generalize to unseen types of molecules and overcome self-interaction error.
more »
« less
- Award ID(s):
- 1856165
- PAR ID:
- 10220447
- Date Published:
- Journal Name:
- Physical review letters
- Issue:
- 126
- ISSN:
- 1079-7114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has emerged as one of the new promising research directions for modern science and engineering. In this review, we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods for accelerating the discovery of novel functional materials as well as enhancing the understanding of composition-process-structure-property relationships. We specifically discuss the challenges and opportunities in integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic regression are detailed in the review, along with several detailed case studies and results in materials discovery.more » « less
-
Abstract Traditional data-driven deep learning models often struggle with high training costs, error accumulation, and poor generalizability in complex physical processes. Physics-informed deep learning (PiDL) addresses these challenges by incorporating physical principles into the model. Most PiDL approaches regularize training by embedding governing equations into the loss function, yet this depends heavily on extensive hyperparameter tuning to weigh each loss term. To this end, we propose to leverage physics prior knowledge by “baking” the discretized governing equations into the neural network architecture via the connection between the partial differential equations (PDE) operators and network structures, resulting in a PDE-preserved neural network (PPNN). This method, embedding discretized PDEs through convolutional residual networks in a multi-resolution setting, largely improves the generalizability and long-term prediction accuracy, outperforming conventional black-box models. The effectiveness and merit of the proposed methods have been demonstrated across various spatiotemporal dynamical systems governed by spatiotemporal PDEs, including reaction-diffusion, Burgers’, and Navier-Stokes equations.more » « less
-
null (Ed.)A bstract Discoveries of new phenomena often involve a dedicated search for a hypothetical physics signature. Recently, novel deep learning techniques have emerged for anomaly detection in the absence of a signal prior. However, by ignoring signal priors, the sensitivity of these approaches is significantly reduced. We present a new strategy dubbed Quasi Anomalous Knowledge (QUAK), whereby we introduce alternative signal priors that capture some of the salient features of new physics signatures, allowing for the recovery of sensitivity even when the alternative signal is incorrect. This approach can be applied to a broad range of physics models and neural network architectures. In this paper, we apply QUAK to anomaly detection of new physics events at the CERN Large Hadron Collider utilizing variational autoencoders with normalizing flow.more » « less
-
null (Ed.)Discoveries of new phenomena often involve a dedicated search for a hypothetical physics signature. Recently, novel deep learning techniques have emerged for anomaly detection in the absence of a signal prior. However, by ignoring signal priors, the sensitivity of these approaches is significantly reduced. We present a new strategy dubbed Quasi Anomalous Knowledge (QUAK), whereby we introduce alternative signal priors that capture some of the salient features of new physics signatures, allowing for the recovery of sensitivity even when the alternative signal is incorrect. This approach can be applied to a broad range of physics models and neural network architectures. In this paper, we apply QUAK to anomaly detection of new physics events at the CERN Large Hadron Collider utilizing variational autoencoders with normalizing flow.more » « less
An official website of the United States government

