skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Predicting the adsorption of organic pollutants on boron nitride nanosheets via in silico techniques: DFT computations and QSAR modeling
Investigating the adsorption of organic pollutants onto boron nitride nanosheets is crucial for designing novel boron nitride adsorbents so as to remove pollutants from the environment. In this study, we performed density functional theory (DFT) computations to investigate the adsorption of 28 aromatic compounds onto boron nitride nanosheets, and developed four quantitative structure–activity relationship (QSAR) models for predicting the logarithm of the adsorption equilibrium constant (log  K ) values of organic pollutants adsorbed onto boron nitride nanosheets in both gaseous and aqueous environments. The DFT-predicted adsorption energies showed that boron nitride nanosheets exhibit stronger adsorption capability than graphene. Our QSAR analyses revealed that van der Waals interactions play dominant roles in gaseous adsorption, while van der Waals and hydrophobic interactions are the main driving forces in aqueous adsorption. This work demonstrates that in silico QSAR models can serve as efficient tools for high-throughput prediction of log  K values for organic pollutants adsorbed onto boron nitride nanomaterials.  more » « less
Award ID(s):
1849243
PAR ID:
10221170
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
Volume:
8
Issue:
3
ISSN:
2051-8153
Page Range / eLocation ID:
795 to 805
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting adsorption of organic pollutants onto graphene nanomaterials is not only useful for exploring their potential adsorbent applications, but also helpful for better understanding their fate and risks in aquatic environments. Herein molecular dynamics (MD) simulations and theoretical linear solvation energy relationships (TLSERs) were employed to construct prediction models for adsorption of neutral organic pollutants onto graphene and graphene oxides. The MD simulations for adsorption of 43 aromatic compounds onto graphene and diverse models of graphene oxides with various functional groups (hydroxyl, epoxy and carbonyl) demonstrate that graphene has a stronger affinity for the aromatic compounds than graphene oxides. The hydroxyl and carbonyl groups of graphene oxides were found to form hydrogen bonds with the aromatic adsorbates, while epoxy groups did not. TLSER models were developed for predicting the adsorption equilibrium coefficients ( K ) onto graphene and graphene oxide nanosheets. In the graphene prediction model, H-donating ability ( ε α ) and dispersion/hydrophobic interactions ( V ) have significant effects on log  K values, while in the graphene oxide model, ε α is the most influential factor on log  K values. The models provide in silico approaches for predicting adsorption affinities onto graphenic nanomaterials. 
    more » « less
  2. Asymmetric interactions such as entropic (e.g., encoded by nonspherical shapes) or surface forces (e.g., encoded by patterned surface chemistry or DNA hybridization) provide access to functional states of colloidal matter, but versatile approaches for engineering asymmetric van der Waals interactions have the potential to expand further the palette of materials that can be assembled through such bottom-up processes. We show that polymerization of liquid crystal (LC) emulsions leads to compositionally homogeneous and spherical microparticles that encode van der Waals interactions with complex symmetries (e.g., quadrupolar and dipolar) that reflect the internal organization of the LC. Experiments performed using kinetically controlled probe colloid adsorption and complementary calculations support our conclusion that LC ordering can program van der Waals interactions by ~20 k B T across the surfaces of microparticles. Because diverse LC configurations can be engineered by confinement, these results provide fresh ideas for programming van der Waals interactions for assembly of soft matter. 
    more » « less
  3. Abstract

    Emergent color centers with accessible spins hosted by van der Waals materials have attracted substantial interest in recent years due to their significant potential for implementing transformative quantum sensing technologies. Hexagonal boron nitride (hBN) is naturally relevant in this context due to its remarkable ease of integration into devices consisting of low-dimensional materials. Taking advantage of boron vacancy spin defects in hBN, we report nanoscale quantum imaging of low-dimensional ferromagnetism sustained in Fe3GeTe2/hBN van der Waals heterostructures. Exploiting spin relaxometry methods, we have further observed spatially varying magnetic fluctuations in the exfoliated Fe3GeTe2flake, whose magnitude reaches a peak value around the Curie temperature. Our results demonstrate the capability of spin defects in hBN of investigating local magnetic properties of layered materials in an accessible and precise way, which can be extended readily to a broad range of miniaturized van der Waals heterostructure systems.

     
    more » « less
  4. Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B 4 C), the third hardest known material, into ultrathin nanosheets. B 4 C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B 4 C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B 4 C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B 4 C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at the surface. Atomic force microscopy (AFM) shows that the nanosheets produced by LPE are as thin as 5 nm, with an average thickness of 31.4 nm and average area of 16 000 nm 2 . Raman spectroscopy shows that many of the nanosheets exhibit additional carbon-rich peaks that change with laser irradiation, which are attributed to atomic rearrangements and amorphization at the nanosheet surfaces, consistent with the diverse cleavage planes. High-resolution transmission electron microscopy (HRTEM) demonstrates that many different cleavage planes exist among the exfoliated nanosheets, in agreement with DFT simulations. This work elucidates the exfoliation mechanism of 2D B 4 C and suggests that LPE can be applied to generate nanosheets from a variety of non-layered and non-vdW materials. 
    more » « less
  5. Prototyping of van der Waals materials on dense nanophotonic devices requires high-precision monolayer discrimination to avoid bulk material contamination. We use the glass transition temperature of polycarbonate, used in the standard dry transfer process, to draw an in situ point for the precise pickup of two-dimensional materials. We transfer transition metal dichalcogenide monolayers onto a large-area silicon nitride spiral waveguide and silicon nitride ring resonators to demonstrate the high-precision contamination-free nature of the modified dry transfer method. Our improved local transfer technique is a necessary step for the deterministic integration of high-quality van der Waals materials onto nanocavities for the exploration of few-photon nonlinear optics on a high-throughput, nanofabrication-compatible platform.

     
    more » « less