skip to main content

Title: Seismic Response of Post-Tensioned Cross-Laminated Timber Rocking Wall Buildings
Nonlinear time history analyses were conducted for 5-story and 12-story prototype buildings that used post-tensioned cross-laminated timber rocking walls coupled with U-shaped flexural plates (UFPs) as the lateral force resisting system. The building models were subjected to 22 far-field and 28 near-fault ground motions, with and without directivity effects, scaled to the design earthquake and maximum considered earthquake for Seattle, with ASCE Site Class D. The buildings were designed to performance objectives that limited structural damage to crushing at the wall toes and nonlinear deformation in the UFPs, while ensuring code-based interstory drift requirements were satisfied and the post-tensioned rods remained linear. The walls of the 12-story building had a second rocking joint at midheight to reduce flexural demands in the lower stories and interstory drift in the upper stories. The interstory drift, in-plane wall shear and overturning moment, UFP deformation, and extent of wall toe crushing is summarized for each building. Near-fault ground motions with directivity effects resulted in the largest demands for the 5-story building, while the midheight rocking joint diminished the influence of ground motion directivity effects in the 12-story building. Results for both buildings confirmed that UFPs located higher from the base of the walls dissipated more » more energy compared to UFPs closer to the base. « less
Authors:
; ; ;
Award ID(s):
1635156
Publication Date:
NSF-PAR ID:
10221635
Journal Name:
Journal of structural engineering
Volume:
146
Issue:
7
ISSN:
0733-9445
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern seismic resistant design has been focusing on development of cost effective structural systems which experience minimal damage during an earthquake. Unbonded post-tensioned precast concrete walls provide a suitable solution due to their self-centering behavior and their ability to undergo large nonlinear deformation with minimal damage. Several experimental and analytical investigation focusing on lateral load resisting behavior of unbonded post-tensioned precast walls has been carried out in the past two decades. These investigations have primarily focused on lateral load resistance, self-centering capacity, energy dissipation and extent of damage in confined concrete region of the wall system. Past experimental results have shown that self-centering capacity of the wall system decreases at higher lateral drifts. Particularly, rocking walls with higher energy dissipation capacity, sustain considerable residual displacement. This residual displacement in the wall system may affect the ability of the entire structure to re-center. Though increasing initial prestressing force helps in reducing residual drift, it also subjects concrete to increased axial compressive stress which may lead to premature strength degradation of confined concrete in rocking corners. Accurate prediction of expected concrete strains in confined regions during increasing drift cycle is critical in design of such wall systems. Simplified design procedures available inmore »literature assume different values for plastic hinge length to estimate critical concrete strain values. The results from the experimental tests available in literature were analyzed, to understand the effects of energy dissipating elements on residual drift and to examine the accuracy of simplified design procedures in predicting critical concrete strain. Based on the findings, recommendations are made on design of energy dissipating elements and plastic hinge length for unbonded post-tensioned precast rocking walls.« less
  2. Drywall partition walls are susceptible to damage at low-level drifts, and hence reducing such damage is key to achieving seismic resiliency in buildings. Prior tests on drywall partition walls have shown that slip track connection detailing leads to better performance than other detailing, such as fully-fixed connections. However, in all prior testing, partition wall performance was evaluated using a unidirectional loading protocol (either in-plane or out-of-plane) or in shake table testing. Moreover, all details are susceptible to considerable damage to wall intersections. Two phases of the test have been performed at the Natural Hazards Engineering Research Infrastructure (NHERI) Lehigh Equipment Facility to develop improved details of drywall partition walls under bidirectional loading. The partition walls were tested alongside a cross-laminated timber (CLT) post-tensioned rocking wall subassembly, wherein the CLT system is under development as a resilient lateral system for tall timber buildings. In the Phase 1, the slip behavior of conventional slip-track detailing was compared to telescoping detailing (track-within-a-track deflection assembly). In the Phase 2, two details for reducing the wall intersection damage were evaluated on traditional slip-track C-shaped walls. First, a corner gap detail was tested. This detail incorporates a gap through the wall intersection to reduce the collisionmore »damage at two intersecting walls. Second, a distributed gap detail was tested. In this approach, the aim was to reduce damage by using more frequent control joints through the length of the wall. All walls were tested under a bidirectional loading protocol with three sub-cycles: in-plane, a bi-directional hexagonal load path, and a bi-directional hexagonal load path with an increase in the out-of-plane drift. This loading protocol allows for studying the bidirectional behavior of walls and evaluating the effect of out-of-plane drift on the partition wall resisting force. In the Phase 1, the telescoping detailing performed better than conventional slip track detailing because it eliminated damage to the framing. In Phase 2, the distributed gap detailing delayed damage to about 1% story drift. For the corner gap detailing, the sacrificial corner bead detached at low drifts, but the wall itself was damage-free until 2.5% drift. Bidirectional loading was found to have an insignificant influence on the in-plane resistance of the walls, and the overall resistance of the walls was trivial compared to the CLT rocking.« less
  3. With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, full-scale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shakingmore »table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.« less
  4. Studies of recorded ground motions and simulations have shown that deep sedimentary basins can greatly increase the damage expected during earthquakes. Unlike past earthquake design provisions, future ones are likely to consider basin effects, but the consequences of accounting for these effects are uncertain. This article quantifies the impacts of basin amplification on the collapse risk of 4- to 24-story reinforced concrete wall building archetypes in the uncoupled direction. These buildings were designed for the seismic hazard level in Seattle according to the ASCE 7-16 design provisions, which neglect basin effects. For ground motion map frameworks that do consider basin effects (2018 USGS National Seismic Hazard Model), the average collapse risk for these structures would be 2.1% in 50 years, which exceeds the target value of 1%. It is shown that this 1% target could be achieved by: (1) increasing the design forces by 25%, (2) decreasing the drift limits from 2.0% to 1.25%, or (3) increasing the median drift capacity of the gravity systems to exceed 9%. The implications for these design changes are quantified in terms of the cross-sectional area of the walls, longitudinal reinforcement, and usable floor space. It is also shown that the collapse risk increases tomore »2.8% when the results of physics-based ground motion simulations are used for the large-magnitude Cascadia subduction interface earthquake contribution to the hazard. In this case, it is necessary to combine large changes in the drift capacities, design forces, and/or drift limits to meet the collapse risk target.

    « less
  5. Drywall partition walls (DPW) could considerably affect the seismic resilience of tall cross-laminated timber (CLT) buildings due to cost and building downtime associated with repair. These drift sensitive components are susceptible to damage at low shaking intensities, and thus controlling or eliminating such damage in low to moderate earthquakes is key to seismic resilience. Conversely, post-tensioned CLT rocking walls have been shown to be a resilient lateral load resistant system for tall CLT building in high seismic areas. A series of tests will be performed at the NHERI Lehigh EF to compare the performance of DPWs with conventional slip-track detailing and alternative telescoping slip-track detailing (track-within-a-track deflection assembly), and to evaluate different approaches for minimizing damage at the wall intersections through the use of gaps. Moreover, a configuration is examined with partition wall encapsulating the rocking wall for fire protection. This paper presents a summary of pre-test studies to design the best configuration of DPW to improve the overall resiliency of the structure.