skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seismic Response of Post-Tensioned Cross-Laminated Timber Rocking Wall Buildings
Nonlinear time history analyses were conducted for 5-story and 12-story prototype buildings that used post-tensioned cross-laminated timber rocking walls coupled with U-shaped flexural plates (UFPs) as the lateral force resisting system. The building models were subjected to 22 far-field and 28 near-fault ground motions, with and without directivity effects, scaled to the design earthquake and maximum considered earthquake for Seattle, with ASCE Site Class D. The buildings were designed to performance objectives that limited structural damage to crushing at the wall toes and nonlinear deformation in the UFPs, while ensuring code-based interstory drift requirements were satisfied and the post-tensioned rods remained linear. The walls of the 12-story building had a second rocking joint at midheight to reduce flexural demands in the lower stories and interstory drift in the upper stories. The interstory drift, in-plane wall shear and overturning moment, UFP deformation, and extent of wall toe crushing is summarized for each building. Near-fault ground motions with directivity effects resulted in the largest demands for the 5-story building, while the midheight rocking joint diminished the influence of ground motion directivity effects in the 12-story building. Results for both buildings confirmed that UFPs located higher from the base of the walls dissipated more energy compared to UFPs closer to the base.  more » « less
Award ID(s):
1635156
PAR ID:
10221635
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of structural engineering
Volume:
146
Issue:
7
ISSN:
0733-9445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Steel energy dissipators can be combined with mass timber in integrated seismic lateral force–resisting systems to achieve designs with enhanced seismic performance and sustainability benefits. Examples of such integration include the use of mass timber post-tensioned rocking walls equipped with steel energy dissipation devices. This study proposes a solution using buckling-restrained boundary elements (BRBs) with mass timber walls detailed to pivot about a pinned base. This design allows the walls to rotate with minimal flexural restraint, distributing drift demands more uniformly with building height and reducing crushing damage at the wall base. Experimental quasi-static cyclic tests and numerical simulations were used to characterize the first- and higher-mode behavior of a full-scale three-story building featuring a mass timber gravity system and the proposed mass timber-BRB system. Under first-mode loading, the specimen reached 4% roof drift ratio with stable hysteretic behavior and a nearly uniform story drift profile. While residual drifts were nonnegligible due to the lack of self-centering, analytical estimates indicate realignment is likely feasible at the design earthquake level. Under second-mode loading, the specimen exhibited near-linear behavior with high stiffness. Experimental results were corroborated with numerical simulations for the isolated gravity frame, first-mode-like, and second-mode-like loading protocols. It is expected that results from this study will facilitate greater use of mass timber seismic lateral force–resisting systems. 
    more » « less
  2. Mass timber is a sustainable option for building design compared to traditional steel and concrete building systems. A shake table test of a full-scale 10-story mass timber building with post-tensioned mass timber rocking walls will be conducted as part of the NHERI TallWood project. The rocking wall system is inherently flexible and is expected to sustain large interstory drifts. Thus, the building’s vertically oriented non-structural components, which include cold-formed steel (CFS) framed exterior skin subassemblies that use platform, bypass, and spandrel framing, a stick-built glass curtain wall subassembly with mechanically captured glazing, and CFS framed interior walls, will be built with a variety of innovative details to accommodate the large drift demands. This paper will describe these innovative details and the mechanisms by which they mitigate damage, provide an overview of the shake table test protocol, and present performance predictions for the non-structural walls. 
    more » « less
  3. Structural engineering is moving towards the design of enhanced performing buildings under earthquake events to improve the resiliency of urban communities. Buckling Restrained Braced Frames (BRBF) have been widely adopted to resist lateral loads. However, typical configurations could be subjected to drift concentration, leading to large story drifts and uneven utilization of the BRBs with building height. Studies have suggested that innovative configurations, such as pivoting or rocking frames, can provide a better distribution of the story drift by delaying or preventing story mechanisms and spreading the energy dissipation to adjacent stories across the building height. These types of bracing configurations utilize as essentially elastic spine, or strongback, to induce a global tilting mode. However, since the spine is designed to remain elastic, additional design considerations are needed to size the elements in strongbacks. This study presents a comparative study between traditional chevron BRBF and strongback BRBF systems for a set of buildings with different heights and tributary areas. Results show that the pivoting and rocking strongback result in reduced the peak story drift with more uniform distribution of drift demands. The cost of these alternatives, per frame, was similar to the chevron BRBF. 
    more » « less
  4. Modern seismic resistant design has been focusing on development of cost effective structural systems which experience minimal damage during an earthquake. Unbonded post-tensioned precast concrete walls provide a suitable solution due to their self-centering behavior and their ability to undergo large nonlinear deformation with minimal damage. Several experimental and analytical investigation focusing on lateral load resisting behavior of unbonded post-tensioned precast walls has been carried out in the past two decades. These investigations have primarily focused on lateral load resistance, self-centering capacity, energy dissipation and extent of damage in confined concrete region of the wall system. Past experimental results have shown that self-centering capacity of the wall system decreases at higher lateral drifts. Particularly, rocking walls with higher energy dissipation capacity, sustain considerable residual displacement. This residual displacement in the wall system may affect the ability of the entire structure to re-center. Though increasing initial prestressing force helps in reducing residual drift, it also subjects concrete to increased axial compressive stress which may lead to premature strength degradation of confined concrete in rocking corners. Accurate prediction of expected concrete strains in confined regions during increasing drift cycle is critical in design of such wall systems. Simplified design procedures available in literature assume different values for plastic hinge length to estimate critical concrete strain values. The results from the experimental tests available in literature were analyzed, to understand the effects of energy dissipating elements on residual drift and to examine the accuracy of simplified design procedures in predicting critical concrete strain. Based on the findings, recommendations are made on design of energy dissipating elements and plastic hinge length for unbonded post-tensioned precast rocking walls. 
    more » « less
  5. A series of shake table tests were recently conducted on full-scale 10-story and 6-story mass timber buildings at the 6-DOF Large High-Performance Outdoor Shaking Table facility at the University of California San Diego. Stairs, providing the primary egress in and out of a building during and after an earthquake event, were incorporated in each of these building test programs. To ensure they support the immediate recovery of building function, a variety of drift-release details were incorporated. Previous earthquake events and experimental studies have shown that stairs are among the most drift-sensitive nonstructural systems and are prone to damage, therefore relieving interstory drifts is paramount to improving their performance. To this end, the designed drift-release connections within the stairs considered the test buildings response during earthquake motions scaled at various hazard levels with expected minor and repairable damage under large earthquake loading. This paper provides an overview of the shake table test programs from the perspective of the design and performance of resilient steel stairs. 
    more » « less