Autonomous systems, such as Unmanned Aerial Vehicles (UAVs), are expected to run complex reinforcement learning (RL) models to execute fully autonomous positionnavigation-time tasks within stringent onboard weight and power constraints. We observe that reducing onboard operating voltage can benefit the energy efficiency of both the computation and flight mission, however, it can also result in on-chip bit failures that are detrimental to mission safety and performance. To this end, we propose BERRY, a robust learning framework to improve bit error robustness and energy efficiency for RL-enabled autonomous systems. BERRY supports robust learning, both offline and on-board the UAV, and for the first time, demonstrates the practicality of robust low-voltage operation on UAVs that leads to high energy savings in both compute-level operation and systemlevel quality-of-flight. We perform extensive experiments on 72 autonomous navigation scenarios and demonstrate that BERRY generalizes well across environments, UAVs, autonomy policies, operating voltages and fault patterns, and consistently improves robustness, efficiency and mission performance, achieving up to 15.62% reduction in flight energy, 18.51% increase in the number of successful missions, and 3.43× processing energy reduction.
more »
« less
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Balancing performance and safety is crucial to deploying autonomous vehicles in multi-agent environments. In particular, autonomous racing is a domain that penalizes safe but conservative policies, highlighting the need for robust, adaptive strategies. Current approaches either make simplifying assumptions about other agents or lack robust mechanisms for online adaptation. This work makes algorithmic contributions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs about opponents’ behaviors. We rigorously quantify the tradeoffs in performance and robustness when approximating these computations in real-time motion-planning, and we demonstrate our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to Formula One racecars.
more »
« less
- Award ID(s):
- 1925587
- PAR ID:
- 10221875
- Date Published:
- Journal Name:
- Proceedings of the 37th International Conference on Machine Learning
- Page Range / eLocation ID:
- 8992--9004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fleets of networked autonomous vehicles (AVs) collect terabytes of sensory data, which is often transmitted to central servers (the “cloud”) for training machine learning (ML) models. Ideally, these fleets should upload all their data, especially from rare operating contexts, in order to train robust ML models. However, this is infeasible due to prohibitive network bandwidth and data labeling costs. Instead, we propose a cooperative data sampling strategy where geo-distributed AVs collaborate to collect a diverse ML training dataset in the cloud. Since the AVs have a shared objective but minimal information about each other’s local data distribution and perception model, we can naturally cast cooperative data collection as an 𝑁-player mathematical game. We show that our cooperative sampling strategy uses minimal information to converge to a centralized oracle policy with complete information about all AVs. Moreover, we theoretically characterize the performance benefits of our game-theoretic strategy compared to greedy sampling. Finally, we experimentally demonstrate that our method outperforms standard benchmarks by up to 21.9% on 4 perception datasets, including for autonomous driving in adverse weather conditions. Crucially, our experimental results on real-world datasets closely align with our theoretical guarantees.more » « less
-
null (Ed.)Road condition is an important environmental factor for autonomous vehicle control. A dramatic change in the road condition from the nominal status is a source of uncertainty that can lead to a system failure. Once the vehicle encounters an uncertain environment, such as hitting an ice patch, it is too late to reduce the speed, and the vehicle can lose control. To cope with unforeseen uncertainties in advance, we study a proactive robust adaptive control architecture for autonomous vehicles' lane-keeping control problems. The data center generates a prior environmental uncertainty estimate by combining weather forecasts and measurements from anonymous vehicles through a spatio-temporal filter. The prior estimate contributes to designing a robust heading controller and nominal longitudinal velocity for proactive adaptation to each new condition. The control parameters are updated based on posterior information fusion with on-board measurements.more » « less
-
Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy. To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of\(97.3\% \), average detection delay of 1.2s, and 0 false alarm.more » « less
-
Occlusion is a critical problem in the Autonomous Driving System. Solving this problem requires robust collaboration among autonomous vehicles traveling on the same roads. However, transferring the entirety of raw sensors' data among autonomous vehicles is expensive and can cause a delay in communication. This paper proposes a method called Realtime Collaborative Vehicular Communication based on Bird's-Eye-View (BEV) map. The BEV map holds the accurate depth information from the point cloud image while its 2D representation enables the method to use a novel and well-trained image-based backbone network. Most importantly, we encode the object detection results into the BEV representation to reduce the volume of data transmission and make real-time collaboration between autonomous vehicles possible. The output of this process, the BEV map, can also be used as direct input to most route planning modules. Numerical results show that this novel method can increase the accuracy of object detection by cross-verifying the results from multiple points of view. Thus, in the process, this new method also reduces the object detection challenges that stem from occlusion and partial occlusion. Additionally, different from many existing methods, this new method significantly reduces the data needed for transfer between vehicles, achieving a speed of 21.92 Hz for both the object detection process and the data transmission process, which is sufficiently fast for a real-time system.more » « less
An official website of the United States government

