skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conical Metrics on Riemann Surfaces, II: Spherical Metrics
Abstract We continue our study, initiated in [34], of Riemann surfaces with constant curvature and isolated conic singularities. Using the machinery developed in that earlier paper of extended configuration families of simple divisors, we study the existence and deformation theory for spherical conic metrics with some or all of the cone angles greater than $$2\pi $$. Deformations are obstructed precisely when the number $$2$$ lies in the spectrum of the Friedrichs extension of the Laplacian. Our main result is that, in this case, it is possible to find a smooth local moduli space of solutions by allowing the cone points to split. This analytic fact reflects geometric constructions in [37, 38].  more » « less
Award ID(s):
2041823
PAR ID:
10222788
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many convex optimization problems can be represented through conic extended formulations (EFs) using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. However, EFs are often significantly larger and more complex than equivalent conic natural formulations (NFs) represented using the much broader class of exotic cones. We define an exotic cone as a proper cone for which we can implement easily computable logarithmically homogeneous self-concordant barrier oracles for either the cone or its dual cone. Our goal is to establish whether a generic conic interior point solver supporting NFs can outperform an advanced conic solver specialized for EFs across a variety of applied problems. We introduce Hypatia, a highly configurable open-source conic primal-dual interior point solver written in Julia and accessible through JuMP. Hypatia has a generic interface for exotic cones, some of which we define here. For seven applied problems, we introduce NFs using these cones and construct EFs that are necessarily larger and more complex. Our computational experiments demonstrate the advantages, especially in terms of solve time and memory usage, of solving the NFs with Hypatia compared with solving the EFs with either Hypatia or MOSEK 9. 
    more » « less
  2. Abstract In recent work, we provide computational arguments for expanding the class of proper cones recognized by conic optimization solvers, to permit simpler, smaller, more natural conic formulations. We define an exotic cone as a proper cone for which we can implement a small set of tractable (i.e. fast, numerically stable, analytic) oracles for a logarithmically homogeneous self-concordant barrier for the cone or for its dual cone. Our extensible, open-source conic interior point solver, Hypatia, allows modeling and solving any conic problem over a Cartesian product of exotic cones. In this paper, we introduce Hypatia’s interior point algorithm, which generalizes that of Skajaa and Ye (Math. Program. 150(2):391–422, 2015) by handling exotic cones without tractable primal oracles. To improve iteration count and solve time in practice, we propose four enhancements to the interior point stepping procedure of Skajaa and Ye: (1) loosening the central path proximity conditions, (2) adjusting the directions using a third order directional derivative barrier oracle, (3) performing a backtracking search on a curve, and (4) combining the prediction and centering directions. We implement 23 useful exotic cones in Hypatia. We summarize the complexity of computing oracles for these cones and show that our new third order oracle is not a bottleneck. From 37 applied examples, we generate a diverse benchmark set of 379 problems. Our computational testing shows that each stepping enhancement improves Hypatia’s iteration count and solve time. Altogether, the enhancements reduce the geometric means of iteration count and solve time by over 80% and 70% respectively. 
    more » « less
  3. We present alfonso, an open-source Matlab package for solving conic optimization problems over nonsymmetric convex cones. The implementation is based on the authors’ corrected analysis of a method of Skajaa and Ye. It enables optimization over any convex cone as long as a logarithmically homogeneous self-concordant barrier is available for the cone or its dual. This includes many nonsymmetric cones, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, algorithms for nonsymmetric conic optimization also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. The worst-case iteration complexity of alfonso is the best known for nonsymmetric cone optimization: [Formula: see text] iterations to reach an ε-optimal solution, where ν is the barrier parameter of the barrier function used in the optimization. Alfonso can be interfaced with a Matlab function (supplied by the user) that computes the Hessian of a barrier function for the cone. A simplified interface is also available to optimize over the direct product of cones for which a barrier function has already been built into the software. This interface can be easily extended to include new cones. Both interfaces are illustrated by solving linear programs. The oracle interface and the efficiency of alfonso are also demonstrated using an optimal design of experiments problem in which the tailored barrier computation greatly decreases the solution time compared with using state-of-the-art, off-the-shelf conic optimization software. Summary of Contribution: The paper describes an open-source Matlab package for optimization over nonsymmetric cones. A particularly important feature of this software is that, unlike other conic optimization software, it enables optimization over any convex cone as long as a suitable barrier function is available for the cone or its dual, not limiting the user to a small number of specific cones. Nonsymmetric cones for which such barriers are already known include, for example, hyperbolicity cones and their duals (such as sum-of-squares cones), semidefinite and second-order cone representable cones, power cones, and the exponential cone. Thus, the scope of this software is far larger than most current conic optimization software. This does not come at the price of efficiency, as the worst-case iteration complexity of our algorithm matches the iteration complexity of the most successful interior-point methods for symmetric cones. Besides enabling the solution of problems that cannot be cast as optimization problems over a symmetric cone, our software can also offer performance advantages for problems whose symmetric cone programming representation requires a large number of auxiliary variables or has a special structure that can be exploited in the barrier computation. This is also demonstrated in this paper via an example in which our code significantly outperforms Mosek 9 and SCS 2. 
    more » « less
  4. Scheinberg, Katya (Ed.)
    In this paper, we provide a full conjugacy and subdifferential calculus for convex convex-composite functions in finite-dimensional space. Our approach, based on infimal convolution and cone convexity, is straightforward. The results are established under a verifiable Slater-type condition, with relaxed monotonicity and without lower semicontinuity assumptions on the functions in play. The versatility of our findings is illustrated by a series of applications in optimization and matrix analysis, including conic programming, matrix-fractional, variational Gram, and spectral functions. 
    more » « less
  5. We describe strong convex valid inequalities for conic quadratic mixed 0–1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0–1 relaxations. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint over binary variables and unbounded continuous variables. We then generalize and strengthen the inequalities by incorporating additional constraints of the optimization problem. Computational experiments on mean-risk optimization with correlations, assortment optimization, and robust conic quadratic optimization indicate that the new inequalities strengthen the convex relaxations substantially and lead to significant performance improvements. 
    more » « less