skip to main content

Title: An Electrodynamic Wireless Power Receiver ‘Chip’ for Wearables and Bio-implants
This paper presents the design, fabrication and experimental characterization of a chip-sized wireless power receiver for low-frequency electrodynamic wireless power transmission (EWPT). Utilizing a laser micro-machined meandering suspension, one NdFeB magnet, and two PZT-SA piezoelectric patches, this 0.08 cm 3 micro-receiver operates at its torsion mode mechanical resonance of 724 Hz. The device generates 360 μW average power (4.2 mWcm -3 power density) at 1 cm distance from a transmitter coil operating at 724 Hz and safely within allowable human exposure limits of 2 mTrms field. Compared to a previously reported macro-scale prototype, this volume-efficient micro-receiver is 31x smaller and offers 3.2x higher power density within a low-profile, compact footprint for wirelessly charging wearable and bio-implantable devices.
; ;
Award ID(s):
1439644 1939009
Publication Date:
Journal Name:
2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)
Page Range or eLocation-ID:
271 to 274
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the design, fabrication, and experimental characterization of a chip-sized electromechanical micro-receiver for low-frequency, near-field wireless power transmission that employs both electrodynamic and piezoelectric transductions to achieve a high power density and high output voltage while maintaining a low profile. The 0.09 cm 3 device comprises a laser-micro-machined titanium suspension, one NdFeB magnet, two PZT-5A piezo-ceramic patches, and a precision-manufactured micro-coil with a thickness of only 1.65 mm. The device generates 520 μW average power (5.5 mW•cm -3 ) at 4 cm distance from a transmitter coil operating at 734.6 Hz and within safe human exposure limits. Compared to a previously reported piezoelectric-only prototype, this device generates ~2.5x higher power and offers 18% increased normalized power density (6.5 mW•cm -3 •mT -2 ) for potential improvement in wirelessly charging wearables and bio-implants.
  2. Abstract
    <p>Data files were used in support of the research paper titled &#34;“Experimentation Framework for Wireless<br /> Communication Systems under Jamming Scenarios&#34; which has been submitted to the IET Cyber-Physical Systems: Theory &amp; Applications journal. </p> <p>Authors: Marko Jacovic, Michael J. Liston, Vasil Pano, Geoffrey Mainland, Kapil R. Dandekar<br /> Contact: krd26&#64;</p> <p>---------------------------------------------------------------------------------------------</p> <p>Top-level directories correspond to the case studies discussed in the paper. Each includes the sub-directories: logs, parsers, rayTracingEmulation, results. </p> <p>--------------------------------</p> <p>logs:    - data logs collected from devices under test<br />     - &#39;defenseInfrastucture&#39; contains console output from a WARP 802.11 reference design network. Filename structure follows &#39;*x*dB_*y*.txt&#39; in which *x* is the reactive jamming power level and *y* is the jaming duration in samples (100k samples &#61; 1 ms). &#39;noJammer.txt&#39; does not include the jammer and is a base-line case. &#39;outMedian.txt&#39; contains the median statistics for log files collected prior to the inclusion of the calculation in the processing script. <br />     - &#39;uavCommunication&#39; contains MGEN logs at each receiver for cases using omni-directional and RALA antennas with a 10 dB constant jammer and without the jammer. Omni-directional folder contains multiple repeated experiments to provide reliable results during each calculation window. RALA directories use s*N* folders in whichMore>>
  3. Dutta, Achyut K. ; Balaya, Palani ; Xu, Sheng (Ed.)
    Monitoring human health in real-time using wearable and implantable electronics (WIE) has become one of the most promising and rapidly growing technologies in the healthcare industry. In general, these electronics are powered by batteries that require periodic replacement and maintenance over their lifetime. To prolong the operation of these electronics, they should have zero post-installation maintenance. On this front, various energy harvesting technologies to generate electrical energy from ambient energy sources have been researched. Many energy harvesters currently available are limited by their power output and energy densities. With the miniaturization of wearable and implantable electronics, the size of the harvesters must be miniaturized accordingly in order to increase the energy density of the harvesters. Additionally, many of the energy harvesters also suffer from limited operational parameters such as resonance frequency and variable input signals. In this work, low frequency motion energy harvesting based on reverse electrowetting-ondielectric (REWOD) is examined using perforated high surface area electrodes with 38 µm pore diameters. Total available surface area per planar area was 8.36 cm2 showing a significant surface area enhancement from planar to porous electrodes and proportional increase in AC voltage density from our previous work. In REWOD energy harvesting, high surface areamore »electrodes significantly increase the capacitance and hence the power density. An AC peak-to-peak voltage generation from the electrode in the range from 1.57-3.32 V for the given frequency range of 1-5 Hz with 0.5 Hz step is demonstrated. In addition, the unconditioned power generated from the harvester is converted to a DC power using a commercial off-theshelf Schottky diode-based voltage multiplier and low dropout regulator (LDO) such that the sensors that use this technology could be fully self-powered. The produced charge is then converted to a proportional voltage by using a commercial charge amplifier to record the features of the motion activities. A transceiver radio is also used to transmit the digitized data from the amplifier and the built-in analog-to-digital converter (ADC) in the micro-controller. This paper proposes the energy harvester acting as a self-powered motion sensor for different physical activities for wearable and wireless healthcare devices.« less
  4. We report the design, fabrication, and characterization of a prototype that meets the form, fit, and function of a household 1.5 V AA battery, but which can be wirelessly recharged without removal from the host device. The prototype system comprises a low-frequency electrodynamic wireless power transmission (EWPT) receiver, a lithium polymer energy storage cell, and a power management circuit (PMC), all contained within a 3D-printed package. The EWPT receiver and overall system are experimentally characterized using a 238 Hz sinusoidal magnetic charging field and either a 1000 µF electrolytic capacitor or a lithium polymer (LiPo) cell as the storage cell. The system demonstrates a minimal operating field as low as 50 µTrms (similar in magnitude to Earth’s magnetic field). At this minimum charging field, the prototype transfers a maximum dc current of 50 µA to the capacitor, corresponding to a power delivery of 118 µW. The power effectiveness of the power management system is approximately 49%; with power effectiveness defined as the ratio between actual output power and the maximum possible power the EWPT receiver can transfer to a pure resistive load at a given field strength.
  5. A merged system incorporating paperfluidics and papertronics has recently emerged as a simple, single-use, low-cost paradigm for disposable point-of-care (POC) diagnostic applications. Stand-alone and self-sustained paper-based systems are essential to providing effective and lifesaving treatments in resource-constrained environments. Therefore, a realistic and accessible power source is required for actual paper-based POC systems as their diagnostic performance and portability rely significantly on power availability. Among many paper-based batteries and energy storage devices, paper-based microbial fuel cells have attracted much attention because bacteria can harvest electricity from any type of organic matter that is readily available in those challenging regions. However, the promise of this technology has not been translated into practical power applications because of its short power duration, which is not enough to fully operate those systems for a relatively long period. In this work, we for the first time demonstrate a simple and long-lasting paper-based biological solar cell that uses photosynthetic bacteria as biocatalysts. The bacterial photosynthesis and respiration continuously and self-sustainably generate power by converting light energy into electricity. With a highly porous and conductive anode and an innovative solid-state cathode, the biological solar cell built upon the paper substrates generated the maximum current and power density ofmore »65 µA/cm2and 10.7 µW/cm2, respectively, which are considerably greater than those of conventional micro-sized biological solar cells. Furthermore, photosynthetic bacteria in a 3-D volumetric chamber made of a stack of papers provided stable and long-lasting electricity for more than 5 h, while electrical current from the heterotrophic culture on 2-D paper dramatically decreased within several minutes.

    « less