skip to main content


Title: Nonlinear magnetoelectric effects in Al-substituted strontium hexaferrite
Abstract

This report is on the observation and theory of electric fieldEinduced non-linear magnetoelectric (NLME) effects in single crystal platelets of ferrimagnetic M-type strontium aluminum hexagonal ferrite. Using microwave measurement techniques, it was found that a DC electric field along the hexagonal c-axis results in significant changes in the saturation magnetization and uniaxial magneto-crystalline anisotropy field and these changes are proportional to the square of the applied static electric field. The NLME effects were present with or without an external bias magnetic field. TheE-induced variation in magnetic order parameters is attributed to weakening of magnetic exchange and spin–orbit interactions since conduction electrons in the ferrite are effectively excluded from both interactions while being in transit from one Fe ion to another. We present a phenomenological theory which considers magneto-bielectric effects characterized by a quadratic term in electric fieldEin the free energy density. The coefficients for the NLME coupling terms have been calculated from experimental data and they do show variations with the Al substitution level and the largest rates of change of the saturation magnetization and anisotropy constant change with the applied power were observed for x = 0.4. It was also clear from the study that strength of the NLME effect does not depend on the amount Al substitution, but critically depends on the electrical conductivity of the sample with the highest NLME coefficients estimated for the sample with the highest conductivity. Results of this work are of importance for a new family of electric field tunable, miniature, high frequency ferrite devices.

 
more » « less
Award ID(s):
1923732 1808892
NSF-PAR ID:
10223272
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This report is on the observation and analysis of nonlinear magnetoelectric effects (NLME) for in-plane currents perpendicularly to the hexagonal axis in single crystals and liquid phase epitaxy grown thin films of barium hexaferrite. Measurements involved tuning of ferromagnetic resonance (FMR) at 56–58 GHz in the multidomain and single domain states in the ferrite by applying a current. Data on the shift in the resonance frequency with input electric power was utilized to estimate the variations in the magnetic parameter that showed a linear dependence on the input electric power. The NLME tensor coefficients were determined form the estimated changes in the magnetization and uniaxial anisotropy field. The estimated NLME coefficients for in-plane currents are shown to be much higher than for currents flowing along the hexagonal axis. Although the frequency shift of FMR was higher for the single domain resonance, the multi-domain configuration is preferable for device applications since it eliminates the need for a large bias magnetic field. Thus, multidomain resonance with current in the basal plane is favorable for use in electrically tunable miniature, ferrite microwave signal processing devices requiring low operating power.

     
    more » « less
  2. Nanofibers of Y- or W-type hexagonal ferrites and core–shell fibers of hexagonal ferrites and ferroelectric lead zirconate titanate (PZT) or barium titanate (BTO) were synthesized by electrospinning. The fibers were found to be free of impurity phases, and the core–shell structure was confirmed by electron and scanning probe microscopy. The values of magnetization of pure hexagonal ferrite fibers compared well with bulk ferrite values. The coaxial fibers showed good ferroelectric polarization, with a maximum value of 0.85 μC/cm2 and 2.44 μC/cm2 for fibers with BTO core–Co2W shell and PZT core–Ni2Y shell structures, respectively. The magnetization, however, was much smaller than that for bulk hexaferrites. Magneto-electric (ME) coupling strength was characterized by measuring the ME voltage coefficient (MEVC) for magnetic field-assembled films of coaxial fibers. Among the fibers with Y-type, films with Zn2Y showed a higher MEVC than films with Ni2Y, and fibers with Co2W had a higher MEVC than that of those with Zn2W. The highest MEVC of 20.3 mV/cm Oe was measured for Co2W–PZT fibers. A very large ME response was measured in all of the films, even in the absence of an external magnetic bias field. The fibers studied here have the potential for use in magnetic sensors and high-frequency device applications. 
    more » « less
  3. To investigate the influence of manganese substitution on the saturation magnetization of manganese ferrite nanoparticles, samples with various compositions (MnxFe3−xO4,x = 0, 0.25, 0.5, 0.75, and 1) were synthesized and characterized. The saturation magnetization of such materials was both calculated using density functional theory and measured via vibrating sample magnetometry. A discrepancy was found; the computational data demonstrated a positive correlation between manganese content and saturation magnetization, while the experimental data exhibited an inverse correlation. X-ray diffraction (XRD) and magnetometry results indicated that the crystallite diameter and the magnetic diameter decrease when adding more manganese, which could explain the loss of magnetization of the particles. For 20 nm nanoparticles, with increasing manganese substitution level, the crystallite size decreases from 10.9 nm to 6.3 nm and the magnetic diameter decreases from 15.1 nm to 3.5 nm. Further high resolution transmission electron microscopy (HRTEM) analysis confirmed the manganese substitution induced defects in the crystal lattice, which encourages us to find ways of eliminating crystalline defects to make more reliable ferrite nanoparticles. 
    more » « less
  4. Abstract

    The nature of nonlinear magnetoelectric (NLME) effect has been investigated at room-temperature in a single-crystal Zn substituted nickel ferrite. Tuning of the frequency of magnetostatic surface wave (MSSW) modes under an applied pulsed DC electric field/current has been utilized to probe the effect. The frequencies of the modes at 8–20 GHz were found to decrease by ~ 400 MHz for an applied DC powerPof ~ 100 mW and the frequency shift was the same for all of the MSSW modes and linearly proportional toP. A model is proposed for the effect and the NLME phenomenon was interpreted in terms of a reduction in the saturation magnetization due to the DC current. The decrease of magnetization with applied electric power, estimated from data on mode frequency versusP, was − 2.50 G/mW. The frequency tuning efficiency of the MSSW modes due to NLME effects in the ferrite resonator was found to be 4.1 MHz/mW which is an order of magnitude higher than the shift reported for M-type strontium and barium hexaferrite resonators investigated earlier. The spinel ferrite resonator discussed here has the potential for miniature, electric field tunable, planar microwave devices for the 8–20 GHz frequency range.

     
    more » « less
  5. Abstract

    This report is on studies directed at the nature of magneto-electric (ME) coupling by ferromagnetic resonance (FMR) under an electric field in a coaxial nanofiber of nickel ferrite (NFO) and lead zirconate titanate (PZT). Fibers with ferrite cores and PZT shells were prepared by electrospinning. The core–shell structure of annealed fibers was confirmed by electron- and scanning probe microscopy. For studies on converse ME effects, i.e., the magnetic response of the fibers to an applied electric field, FMR measurements were done on a single fiber with a near-field scanning microwave microscope (NSMM) at 5–10 GHz by obtaining profiles of both amplitude and phase of the complex scattering parameterS11as a function of bias magnetic field. The strength of the voltage-ME couplingAvwas determined from the shift in the resonance fieldHrfor bias voltage ofV = 0–7 V applied to the fiber. The coefficientAvfor the NFO core/PZT shell structure was estimated to be − 1.92 kA/Vm (− 24 Oe/V). A model was developed for the converse ME effects in the fibers and the theoretical estimates are in good agreement with the data.

     
    more » « less