We investigate the effectiveness of robot-generated mixed reality gestures. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time, and that robots can pair long referring expressions with mixed reality gestures without cognitively overloading users.
more »
« less
Get This!? Mixed Reality Improves Robot Communication Regardless of Mental Workload
We present the first experiment analyzing the effectiveness of robot-generated mixed reality gestures using real robotic and mixed reality hardware. Our findings demonstrate how these gestures increase user effectiveness by decreasing user response time during visual search tasks, and show that robots can safely pair longer, more natural referring expressions with mixed reality gestures without worrying about cognitively overloading their interlocutors.
more »
« less
- PAR ID:
- 10223467
- Date Published:
- Journal Name:
- ACM/IEEE International Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 412 to 416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In previous work, researchers have repeatedly demonstrated that robots' use of deictic gestures enables effective and natural human-robot interaction. However, new technologies such as augmented reality head mounted displays enable environments in which mixed-reality becomes possible, and in such environments, physical gestures become but one category among many different types of mixed reality deictic gestures. In this paper, we present the first experimental exploration of the effectiveness of mixed reality deictic gestures beyond physical gestures. Specifically, we investigate human perception of videos simulating the display of allocentric gestures, in which robots circle their targets in users' fields of view. Our results suggest that this is an effective communication strategy, both in terms of objective accuracy and subjective perception, especially when paired with complex natural language references.more » « less
-
null (Ed.)Mixed Reality visualizations provide a powerful new approach for enabling gestural capabilities on non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arm positioned over the gesturing robot (an ego-sensitive allocentric gesture). Specifically, we present the results of a within-subjects Mixed Reality HRI experiment (N=23) exploring the trade-offs between these two types of gestures with respect to both objective performance and subjective social perceptions. Our results show a clear trade-off between performance and social perception, with non-ego-sensitive allocentric gestures enabling faster reaction time and higher accuracy, but ego-sensitive gestures enabling higher perceived social presence, anthropomorphism, and likability.more » « less
-
Abstract This paper aims to present a potential cybersecurity risk existing in mixed reality (MR)-based smart manufacturing applications that decipher digital passwords through a single RGB camera to capture the user’s mid-air gestures. We first created a test bed, which is an MR-based smart factory management system consisting of mid-air gesture-based user interfaces (UIs) on a video see-through MR head-mounted display. To interact with UIs and input information, the user’s hand movements and gestures are tracked by the MR system. We setup the experiment to be the estimation of the password input by users through mid-air hand gestures on a virtual numeric keypad. To achieve this goal, we developed a lightweight machine learning-based hand position tracking and gesture recognition method. This method takes either video streaming or recorded video clips (taken by a single RGB camera in front of the user) as input, where the videos record the users’ hand movements and gestures but not the virtual UIs. With the assumption of the known size, position, and layout of the keypad, the machine learning method estimates the password through hand gesture recognition and finger position detection. The evaluation result indicates the effectiveness of the proposed method, with a high accuracy of 97.03%, 94.06%, and 83.83% for 2-digit, 4-digit, and 6-digit passwords, respectively, using real-time video streaming as input with known length condition. Under the unknown length condition, the proposed method reaches 85.50%, 76.15%, and 77.89% accuracy for 2-digit, 4-digit, and 6-digit passwords, respectively.more » « less
-
Mixed reality visualizations provide a powerful new approach for enabling gestural capabilities for non-humanoid robots. This paper explores two different categories of mixed-reality deictic gestures for armless robots: a virtual arrow positioned over a target referent (a non-ego-sensitive allocentric gesture) and a virtual arrow positioned over the robot (an ego-sensitive allocentric gesture). We explore the trade-offs between these two types of gestures, with respect to both objective performance and subjective social perceptions. We conducted a 24-participant within-subjects experiment in which a HoloLens-wearing participant interacted with a robot that used these two types of gestures to refer to objects at two different distances. Our results demonstrate a clear trade-off between performance and social perception: non-ego-sensitive allocentric gestures led to quicker reaction time and higher accuracy, but ego-sensitive gesture led to higher perceived social presence, anthropomorphism, and likability. These results present a challenging design decision to creators of mixed reality robotic systemsmore » « less
An official website of the United States government

