skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modified Arcsine Law for One-Bit Sampled Stationary Signals with Time-Varying Thresholds
One-bit quantization has attracted considerable attention in signal processing for communications and sensing. The arcsine law is a useful relation often used to estimate the normalized covariance matrix of zero-mean stationary input signals when they are sampled by one-bit analog-to-digital converters (ADCs)---practically comparing the signals with a given threshold level. This relation, however, only considers a zero threshold which can cause a remarkable information loss. For the first time in the literature, this paper introduces an approach to extending the arcsine law to the case where one-bit ADCs apply time-varying thresholds. In particular, the proposed method is shown to accurately recover the variance and autocorrelation of the stationary signals of interest.  more » « less
Award ID(s):
1704401
PAR ID:
10223706
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing
ISSN:
2379-190X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One-bit quantization has attracted attention in massive MIMO, radar, and array processing, due to its simplicity, low cost, and capability of parameter estimation. Specifically, the shape of the covariance of the unquantized data can be estimated from the arcsine law and onebit data, if the unquantized data is Gaussian. However, in practice, the Gaussian assumption is not satisfied due to outliers. It is known from the literature that outliers can be modeled by complex elliptically symmetric (CES) distributions with heavy tails. This paper shows that the arcsine law remains applicable to CES distributions. Therefore, the normalized scatter matrix of the unquantized data can be readily estimated from one-bit samples derived from CES distributions. The proposed estimator is not only computationally fast but also robust to CES distributions with heavy tails. These attributes will be demonstrated through numerical examples, in terms of computational time and the estimation error. An application in DOA estimation with MUSIC spectrum is also presented. 
    more » « less
  2. null (Ed.)
    Low-resolution analog-to-digital converters (ADCs) have been considered as a practical and promising solution for reducing cost and power consumption in massive Multiple-Input-Multiple-Output (MIMO) systems. Unfortunately, low-resolution ADCs significantly distort the received signals, and thus make data detection much more challenging. In this paper, we develop a new deep neural network (DNN) framework for efficient and low-complexity data detection in low-resolution massive MIMO systems. Based on reformulated maximum likelihood detection problems, we propose two model-driven DNN-based detectors, namely OBMNet and FBMNet, for one-bit and few-bit massive MIMO systems, respectively. The proposed OBMNet and FBMNet detectors have unique and simple structures designed for low-resolution MIMO receivers and thus can be efficiently trained and implemented. Numerical results also show that OBMNet and FBMNet significantly outperform existing detection methods. 
    more » « less
  3. In massive MIMO, replacing high-resolution ADCs/DACs with low-resolution ones has been deemed as a potential way to significantly reduce the power consumption and hardware costs of massive MIMO implementations. In this context, the challenge lies in how the quantization error effect can be suppressed under low-resolution ADCs/DACs. In this paper we study a spatial sigma-delta (ΣΔ) modulation approach for massive MIMO downlink precoding under one-bit DACs. ΣΔ modulation is a classical signal processing concept for coarse analog-to-digital/digital-to-analog conversion of temporal signals. Fundamentally its idea is to shape the quantization error as high-frequency noise and to avoid using the high-frequency region by oversampling. Assuming a uniform linear array at the base station (BS), we show how ΣΔ modulation can be adapted to the space, or MIMO, case. Essentially, by relating frequency in the temporal case and angle in the spatial case, we develop a spatial ΣΔ modulation solution. By considering sectored array operations we study how the quantization error effect can be reduced, and the effective SNR improved, for zero-forcing (ZF) precoding. Our simulation results show that ZF precoding under spatial ΣΔ modulation performs much better than ZF precoding under direct quantization. 
    more » « less
  4. In this paper, we focus on the multiuser massive multiple-input single-output (MISO) downlink with low-cost 1-bit digital-to-analog converters (DACs) for PSK modulation, and propose a low-complexity refinement process that is applicable to any existing 1-bit precoding approaches based on the constructive interference (CI) formulation. With the decomposition of the signals along the detection thresholds, we first formulate a simple symbol-scaling method as the performance metric. The low-complexity refinement approach is subsequently introduced, where we aim to improve the introduced symbol-scaling performance metric by modifying the transmit signal on one antenna at a time. Numerical results validate the effectiveness of the proposed refinement method on existing approaches for massive MIMO with 1-bit DACs, and the performance improvements are most significant for the low-complexity quantized zero-forcing (ZF) method. 
    more » « less
  5. null (Ed.)
    Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation from one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. 
    more » « less