skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced microLED efficiency via strategic pGaN contact geometries
Micro light-emitting diode (microLED) structures were modeled and validated with fabricated devices to investigate p-type GaN (pGaN) contact size dependence on power output efficiency. Two schemes were investigated: a constant 10μm diameter pGaN contact and varying microLED sizes and a constant 10μm diameter microLED with varying contact sizes. Modeled devices show a 17% improvement in output power by increasing the microLED die size. Fabricated devices followed the same trend with a 70% improvement in power output. Modeled microLED devices of a constant size and varying inner contact sizes show optimized power output at different current densities for various contact sizes. In particular, lower current densities show optimized output for smaller pGaN contacts and trend towards larger contacts for higher current densities in a balance between undesirable efficiency losses at high-current injection and preventing surface recombination losses. We show that for all device geometries, it is preferential to shrink the pGaN contact to maximize efficiency by suppressing surface recombination losses and further improvements should be carefully considered to optimize efficiency for a desired operational brightness.  more » « less
Award ID(s):
1926747
PAR ID:
10224156
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
10
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 14841
Size(s):
Article No. 14841
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on the realization of top-down fabricated, electrically driven, deep-ultraviolet (DUV) AlGaN micropillar array light emitting diodes (LEDs) with high output power density. Ordered arrays of micropillars with the inverse-taper profile were formed from an AlGaN epitaxial stack (epistack) using a Ni-masked Cl2 plasma dry etch and KOH-based wet etching. Following deposition of the n-contact, polydimethylsiloxane was spin-coated and etched-back to reveal the tips of the pillars to allow for formation of the p-contact. The DUV LEDs were tested at the wafer-level using a manual probe station to characterize their electrical and optical properties, revealing stable electroluminescence at 286 nm with a narrow 9-nm linewidth. Optical output power was found to be linearly related to current density, with output power densities up to 35 mW/cm2, comparable to the results reported for epitaxially grown DUV nanowire LEDs. Simulations revealed that the inverse-taper profile of the micropillars could lead to large enhancements in light extraction efficiency (ηEXT) of up to 250% when compared to micropillars with vertical sidewalls. The realization of ordered, electrically driven, top-down fabricated micropillar DUV LEDs with competitive output power represents an important step forward in the development of high-efficiency, scalable DUV emitters for a wide range of applications. 
    more » « less
  2. Abstract Hybrid perovskites are emerging as highly efficient materials for optoelectronic applications, however, their operational lifetime has remained a limiting factor for their continued progress. In this work, perovskite light emitting electrochemical cells utilizing an optimized fraction of lithium hexafluorophosphate (LiPF6) salt additive exhibit enhanced stability. At 0.5 wt% LiPF6, devices exhibit 100 h operation at high brightness in excess of 800 cd m−2under constant current driving, achieving a maximum luminance of 3260 cd m−2and power efficiency of 9.1 Lm W−1. This performance extrapolates to a 6700 h luminance half‐life from 100 cd m−2, a 5.6‐fold improvement over devices with no LiPF6. Analysis under constant voltage driving reveals three current regimes, with lithium addition strongly enhancing current in the second and third regimes. The third regime correlates lower rates of luminance with lowered current flow. These losses are mitigated by LiPF6addition, an effect postulated to arise from preservation of perovskite structure. Electrochemical impedance spectroscopy with equivalent circuit modeling reveals that electrical double layer widths are minimized at 0.5 wt% LiPF6and inversely correlated with efficient performance. These results demonstrate that an optimal LiPF6concentration improves stability and efficiency through improved double layer formation and retention of perovskite structure. 
    more » « less
  3. Abstract Triboelectric nanogenerators (TENGs) are devices capable of effectively harvesting electrical energy from mechanical motion prevalent around us. With the goal of developing TENGs with a small environmental footprint, herein we present the potential of using rubber and paper as biological materials for constructing triboelectric nanogenerators. We explored the performance of these TENGs with various contact material combinations, electrode sizes, and operational frequencies. The optimally configured TENG achieved a maximum open circuit output voltage of over 30 V, and a short circuit current of around 3 µA. Additionally, this optimally configured TENG was capable of charging various capacitors and achieved a maximum power output density of 21 mW/m2. This work demonstrates that biologically derived materials can be used as effective, sustainable, and low-cost contact materials for the development of triboelectric nanogenerators with minimal environmental footprint. 
    more » « less
  4. Impurity-induced disordering (IID) in vertical-cavity surface-emitting lasers (VCSELs) has been shown to provide enhanced performance, such as achieving single fundamental-mode operation with higher output powers when compared to conventional VCSELs. This work presents the performance of oxide-confined, λ ~ 850 nm, VCSELs fabricated with varying IID aperture sizes which are characterized for maximum single-fundamental-mode output power. The electrical and optical performance of these devices are shown in comparison to traditional oxide-confined VCSELs and the optimal IID aperture size is experimentally validated. Control of the lateral-to-vertical (L/V) IID aperture profile is then demonstrated through engineering the strain induced by the IID diffusion mask. This extensive control over the IID aperture enables improved, manufacturable, IID VCSEL designs. 
    more » « less
  5. null (Ed.)
    Multiple silicon solar cell technologies have surpassed or are close to surpassing 26% efficiency. Dielectric and amorphous silicon-based passivation layers combined with minimal metal/silicon contact areas were responsible for reducing the surface saturation current density below 3 fA cm −2 . At open-circuit, in passivated contact solar cells, the recombination is mainly from fundamental mechanisms (Auger and radiative) representing over 3/4 of the total recombination. At the maximum power point, the fundamental recombination fraction can drop to half, as surface and bulk Shockley–Read–Hall step in. As a result, to further increase the performance at the operating point, it is paramount to reduce the bulk dependence and secure proper surface passivation. Bulk recombination can be mitigated either by reducing bulk defect density or by reducing the wafer thickness. We demonstrate that for commercially-viable solar-grade silicon, thinner wafers and surface saturation current densities below 1 fA cm −2 , are required to significantly increase the practical efficiency limit of solar cells up to 0.6% absolute. For a high-quality n-type bulk silicon minority-carrier lifetime of 10 ms, the optimum wafer thickness range is 40–60 μm, a very different value from 110 μm previously calculated assuming undoped substrates and solely Auger and radiative recombination. In this thickness range surface saturation current densities near 0.1 fA cm −2 are required to narrow the gap towards the fundamental efficiency limit. We experimentally demonstrate surface saturation currents below 0.5 fA cm −2 on pi/CZ/in structures across different wafer thicknesses (35–170 μm), with potential to reach open-circuit voltages close to 770 mV and bandgap-voltage offsets near 350 mV. Finally, we use the bandgap-voltage offset as a metric to compare the quality of champion experimental solar cells in the literature, for the most commercially-relevant photovoltaic cell absorbers and architectures. 
    more » « less