skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the practical efficiency limit of silicon solar cells using thin solar-grade substrates
Multiple silicon solar cell technologies have surpassed or are close to surpassing 26% efficiency. Dielectric and amorphous silicon-based passivation layers combined with minimal metal/silicon contact areas were responsible for reducing the surface saturation current density below 3 fA cm −2 . At open-circuit, in passivated contact solar cells, the recombination is mainly from fundamental mechanisms (Auger and radiative) representing over 3/4 of the total recombination. At the maximum power point, the fundamental recombination fraction can drop to half, as surface and bulk Shockley–Read–Hall step in. As a result, to further increase the performance at the operating point, it is paramount to reduce the bulk dependence and secure proper surface passivation. Bulk recombination can be mitigated either by reducing bulk defect density or by reducing the wafer thickness. We demonstrate that for commercially-viable solar-grade silicon, thinner wafers and surface saturation current densities below 1 fA cm −2 , are required to significantly increase the practical efficiency limit of solar cells up to 0.6% absolute. For a high-quality n-type bulk silicon minority-carrier lifetime of 10 ms, the optimum wafer thickness range is 40–60 μm, a very different value from 110 μm previously calculated assuming undoped substrates and solely Auger and radiative recombination. In this thickness range surface saturation current densities near 0.1 fA cm −2 are required to narrow the gap towards the fundamental efficiency limit. We experimentally demonstrate surface saturation currents below 0.5 fA cm −2 on pi/CZ/in structures across different wafer thicknesses (35–170 μm), with potential to reach open-circuit voltages close to 770 mV and bandgap-voltage offsets near 350 mV. Finally, we use the bandgap-voltage offset as a metric to compare the quality of champion experimental solar cells in the literature, for the most commercially-relevant photovoltaic cell absorbers and architectures.  more » « less
Award ID(s):
2016552
PAR ID:
10281907
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
8
Issue:
32
ISSN:
2050-7488
Page Range / eLocation ID:
16599 to 16608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′‐(pyrazine‐2,3,5,6‐tetrayl) tetrakis (N,N‐bis(4‐methoxyphenyl) aniline) (PT‐TPA) which can effectively p‐dope the surface of FAxMA1−xPbI3(FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT‐TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT‐TPA. After applying PT‐TPA into perovskite solar cells, the doping‐induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques. 
    more » « less
  2. Colloidal semiconductor nanocrystals (NCs) have emerged as promising candidates for developing solutionprocessable optical gain media with potential applications in integrated photonic circuits and lasers. However, the deployment of NCs in these technologies has been hindered by the nonradiative Auger recombination of multiexciton states, which shortens the optical gain lifetime and reduces its spectral range. Here, we demonstrate that these limitations can be overcome by using giant colloidal quantum shells (g-QSs), comprising a quantum-confined CdSe shell grown over a large (∼14 nm) CdS bulk core. Such bulk-nanoscale architecture minimizes exciton− exciton interactions, leading to suppressed Auger recombination and one of the broadest gain bandwidths reported for colloidal nanomaterials, spanning energies both above and, remarkably, below the bandgap. Ultrafast transient absorption and photoluminescence measurements demonstrate that the high-energy portion of optical gain arises from states containing more than 15 excitons per particle, while the unusual sub-bandgap gain behavior results from an Auger-assisted radiative recombination, a mechanism that has traditionally been viewed as a loss pathway. Collectively, these results reveal a unique gain regime associated with bulk-nanocrystal hybrid systems, which offers a promising path toward solution-processable light sources. 
    more » « less
  3. High levels of carrier injection in polycrystalline Si may arise, for example, in solar cells under concentrated sunlight. Mechanisms for non-radiative carrier recombination include trap-mediated SRH and higher-order processes, e.g., Auger recombination [1]. In this paper we present our experimental results for intensity-dependent carrier lifetimes and conduction currents in polycrystalline Si wafers illuminated with pulses of up to 50 Sun intensity. We also use a computational model for carrier transport that includes both SRH and Auger recombination mechanisms, in order to explain our experiments. The model allows quantifying recombination rate dependence on carrier concentration. Our goal is to relate the recombination rates to Si microstructure and defect densities [2] that are revealed by IR PL images. We acknowledge the NSF support through grant 1505377. [1] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, and A. Cuevas, Improved quantitative description of Auger recombination in crystalline silicon, Phys. Rev. B 86, 165202 (2012). [2] H. C. Sio, T. Trupke, D. Macdonald, Quantifying carrier recombination at grain boundaries in multicrystalline silicon wafers through photoluminescence imaging. J. Appl. Phys. 116, 244905 (2014). 
    more » « less
  4. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering. 
    more » « less
  5. Spectroscopic ellipsometry (SE) was performed on CuIn Se 2 (CIS) thin films and solar cells with a goal toward optimizing this low bandgap absorber for tandem applications. The CIS thin films and the absorbers in devices were deposited by one-stage thermal co-evaporation on silicon and on Mo-coated soda-lime glass substrates in a deposition system that has yielded CuIn 1-x Ga x Se 2 (CIGS) cells with > 17% efficiency using standard thickness (2.0 μm)x = 0.3 absorbers and > 13% using 0.7 μm low-Ga absorbers. In this study, a mapping capability for CIS Cu stoichiometry y = [Cu]/[In] over the film area was established based on a y-dependent parametric dielectric function (ε 1 , ε 2 ) with bandgap critical point E g decreasing linearly from 1.030 eV for y = 0.7 to 1.016 eV for y = 1.1. In addition, a full set of (ε 1 , ε 2 ) spectra measured for the CIS cell components enables analysis of SE data in terms of an accurate structural model for the device. With this model, spectra in the external quantum efficiency can be predicted, and deviations from this prediction can be attributed to incomplete collection of photogenerated electrons and holes as simulated with a carrier collection profile. 
    more » « less