skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Globular clusters as tracers of the dark matter content of dwarfs in galaxy clusters
ABSTRACT Globular clusters (GCs) are often used to estimate the dark matter content of galaxies, especially dwarf galaxies, where other kinematic tracers are lacking. These estimates typically assume spherical symmetry and dynamical equilibrium, assumptions that may not hold for the sparse GC population of dwarfs in galaxy clusters. We use a catalogue of GCs tagged on to the Illustris simulation to study the accuracy of GC-based mass estimates. We focus on galaxies in the stellar mass range 108–1011.8 M⊙ identified in nine simulated Virgo-like clusters. Our results indicate that mass estimates are, on average, accurate in systems with GC numbers NGC ≥ 10 and where the uncertainty of individual GC line-of-sight velocities is smaller than the inferred velocity dispersion, σGC. In cases where NGC ≤ 10, however, biases may result, depending on how σGC is computed. We provide calibrations that may help alleviate these biases in methods widely used in the literature. As an application, we find a number of dwarfs with $$M_{*} \sim 10^{8.5}\, \mathrm{M}_{\odot }$$ – comparable with the ultra-diffuse galaxy NGC 1052-DF2 (DF2), notable for the low σGC of its 10 GCs – that have $$\sigma _{\rm GC} \sim 7\!-\!15\, {\rm km \,s}^{-1}$$. These DF2 analogues correspond to relatively massive systems at their infall time (M200 ∼ 1–3 × 1011 M⊙), which have retained only 3–17 GCs and have been stripped of more than 95 per cent of their dark matter. Our results suggest that extreme tidal mass loss in otherwise normal dwarf galaxies may be a possible formation channel for ultra-diffuse objects such as DF2.  more » « less
Award ID(s):
1945310
PAR ID:
10224503
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
502
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1661 to 1677
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The discovery of quiescent, dark matter (DM)-deficient ultra-diffuse galaxies (UDGs) with overluminous globular clusters (GCs) has challenged galaxy formation models within the Lambda cold dark matter (ΛCDM) cosmological paradigm. Previously, such galaxies were only identified in the NGC 1052 group, raising the possibility that they are the result of unique, group-specific processes, and limiting their broader significance. The recent identification of FCC 224, a putative DM-deficient UDG on the outskirts of the Fornax Cluster, suggests that such galaxies are not confined to the NGC 1052 group but rather represent a broader phenomenon. We aim to investigate the DM content of FCC 224 and to explore its similarities to the DM-free dwarfs in the NGC 1052 group, DF2 and DF4, to determine whether or not it belongs to the same class of DM-deficient UDGs. We use high-resolution Keck Cosmic Web Imager (KCWI) spectroscopy to study the kinematics, stellar populations, and GC system of FCC 224, enabling direct comparisons with DF2 and DF4. We find that FCC 224 is also DM-deficient and exhibits a distinct set of traits shared with DF2 and DF4, including slow and prolate rotation, quiescence in low-density environments, coeval formation of stars and GCs, flat stellar population gradients, a top-heavy GC luminosity function, and monochromatic GCs. These shared characteristics signal the existence of a previously unrecognised class of DM-deficient dwarf galaxies. This diagnostic framework provides a means of identifying additional examples and raises new questions for galaxy formation models within ΛCDM cosmology. 
    more » « less
  2. ABSTRACT The velocity dispersion of globular clusters (GCs) around ultra-diffuse galaxies (UDGs) in the Virgo cluster spans a wide range, including cases where GC kinematics suggest haloes as massive as (or even more massive than) that of the Milky Way around these faint dwarfs. We analyse the catalogues of GCs derived in post-processing from the TNG50 cosmological simulation to study the GC system kinematics and abundance of simulated UDGs in galaxy groups and clusters. UDGs in this simulation reside exclusively in dwarf-mass haloes with M200 ≲ 1011.2 M⊙. When considering only GCs gravitationally bound to simulated UDGs, we find GCs properties that overlap well with several observational measurements for UDGs. In particular, no bias towards overly massive haloes is inferred from the study of bound GCs, confirming that GCs are good tracers of UDG halo mass. However, we find that contamination by intracluster GCs may, in some cases, substantially increase velocity dispersion estimates when performing projected mock observations of our sample. We caution that targets with less than 10 GC tracers are particularly prone to severe uncertainties. Measuring the stellar kinematics of the host galaxy should help confirm the unusually massive haloes suggested by GC kinematics around some UDGs. 
    more » « less
  3. ABSTRACT The existence of globular clusters (GCs) in a few satellite galaxies, and their absence in majority of dwarf galaxies, present a challenge for models attempting to understand the origins of GCs. In addition to GC presence appearing stochastic and difficult to describe with average trends, in the smallest satellite galaxies GCs contribute a substantial fraction of total stellar mass. We investigate the stochasticity and number of GCs in dwarf galaxies using an updated version of our model that links the formation of GCs to the growth of the host galaxy mass. We find that more than 50 per cent of dwarf galaxies with stellar mass $$M_{\star }\lesssim 2\times 10^7\, \mathrm{M}_\odot$$ do not host GCs, whereas dwarfs with $$M_{\star }\sim 10^8\, \mathrm{M}_\odot$$ almost always contain some GCs, with a median number ∼10 at z  = 0. These predictions are in agreement with the observations of the Local Volume dwarfs. We also confirm the near-linear GC system mass–halo mass relation down to $$M_{\mathrm{h}}\simeq 10^8\, \mathrm{M}_\odot$$ under the assumption that GC formation and evolution in galaxies of all mass can be described by the same physical model. A detailed case study of two model dwarfs that resemble the Fornax dwarf spheroidal galaxy shows that observational samples can be notably biased by incompleteness below detection limit and at large radii. 
    more » « less
  4. null (Ed.)
    ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $$M_{\rm V}^{\rm lim}$$ that spans the range from $$M_{\rm V}^{\rm lim}\sim -7$$ for distant dwarfs to $$M_{\rm V}^{\rm lim}\sim 0$$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SN < 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1. 
    more » « less
  5. We study the quiescent ultradiffuse galaxy FCC 224 in the Fornax cluster using Hubble Space Telescope (HST) imaging, motivated by peculiar properties of its globular cluster (GC) system revealed in shallower imaging. The surface brightness fluctuation distance of FCC 224 measured from HST is 18.6 ± 2.7 Mpc, consistent with the Fornax cluster distance. We use Prospector to infer the stellar population from a combination of multiwavelength photometry (HST, ground-based, Wide-field Infrared Survey Explorer) and Keck Cosmic Web Imager spectroscopy. The galaxy has a mass-weighted age of ∼10 Gyr, metallicity [M/H] of ∼ −1.25 dex, and a very short formation e-folding time of τ ∼ 0.3 Gyr. Its 12 candidate GCs exhibit highly homogeneous g_475−I_814 colors, merely 0.04 mag bluer than the diffuse starlight, which supports a single-burst formation scenario for this galaxy. We confirm a top-heavy GC luminosity function, similar to the two dark matter deficient galaxies NGC 1052-DF2 and DF4. However, FCC 224 differs from those galaxies with relatively small GC sizes of ∼3 pc (∼35% smaller than typical for other dwarfs), and with radial mass segregation in its GC system. We are not yet able to identify a formation scenario to explain all of the GC properties in FCC 224. Follow-up measurements of the dark matter content in FCC 224 will be crucial because of the mix of similarities and differences among FCC 224, DF2, and DF4. 
    more » « less