skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Assessment of Global Ocean Barotropic Tide Models Using Geodetic Mission Altimetry and Surface Drifters
Abstract The accuracy of three data-constrained barotropic ocean tide models is assessed by comparison with data from geodetic mission altimetry and ocean surface drifters, data sources chosen for their independence from the observational data used to develop the tide models. Because these data sources do not provide conventional time series at single locations suitable for harmonic analysis, model performance is evaluated using variance reduction statistics. The results distinguish between shallow and deep-water evaluations of the GOT410, TPXO9A, and FES2014 models; however, a hallmark of the comparisons is strong geographic variability that is not well summarized by global performance statistics. The models exhibit significant regionally coherent differences in performance that should be considered when choosing a model for a particular application. Quantitatively, the differences in explained SSH variance between the models in shallow water are only 1%–2% of the root-mean-square (RMS) tidal signal of about 50 cm, but the differences are larger at high latitudes, more than 10% of 30-cm RMS. Differences with respect to tidal currents variance are strongly influenced by small scales in shallow water and are not well represented by global averages; therefore, maps of model differences are provided. In deep water, the performance of the models is practically indistinguishable from one another using the present data. The foregoing statements apply to the eight dominant astronomical tides M 2 , S 2 , N 2 , K 2 , K 1 , O 1 , P 1 , and Q 1 . Variance reduction statistics for smaller tides are generally not accurate enough to differentiate the models’ performance.  more » « less
Award ID(s):
2102740 1850961 1851166
PAR ID:
10224513
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
51
Issue:
1
ISSN:
0022-3670
Page Range / eLocation ID:
63 to 82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract At present, tides supply approximately half (1 TW) of the energy necessary to sustain the global deep meridional overturning circulation (MOC) through diapycnal mixing. During the Last Glacial Maximum (LGM; 19,000–26,500 years BP), tidal dissipation in the open ocean may have strongly increased due to the 120‐ to 130‐m global mean sea level drop and changes in ocean basin shape. However, few investigations into LGM climate and ocean circulation consider LGM tidal mixing changes. Here, using an intermediate complexity climate model, we present a detailed investigation on how changes in tidal dissipation would affect the global MOC. Present‐day and LGM tidal constituents M2, S2, K1, and O1are simulated using a tide model and accounting for LGM bathymetric changes. The tide model results suggest that the LGM energy supply to the internal wave field was 1.8–3 times larger than at present and highly sensitive to Antarctic and Laurentide ice sheet extent. Including realistic LGM tide forcing in the LGM climate simulations leads to large increases in Atlantic diapycnal diffusivities and strengthens (by 14–64% at 32°S) and deepens the Atlantic MOC. Increased input of tidal energy leads to a greater drawdown of North Atlantic Deep Water and mixing with Antarctic Bottom Water altering Atlantic temperature and salinity distributions. Our results imply that changes in tidal dissipation need be accounted for in paleoclimate simulation setup as they can lead to large differences in ocean mixing, the global MOC, and presumably also ocean carbon and other biogeochemical cycles. 
    more » « less
  2. Abstract The mechanisms and geographic distribution of global tidal dissipation in barotropic tidal models are examined using a high resolution unstructured mesh finite element model. Mesh resolution varies between 2 and 25 km and is especially focused on inner shelves and steep bathymetric gradients. Tidal response sensitivities to bathymetric changes are examined to put into context response sensitivities to frictional processes. We confirm that the Ronne Ice Shelf dramatically affects Atlantic tides but also find that bathymetry in the Hudson Bay system is a critical control. We follow a sequential frictional parameter optimization process and use TPXO9 data‐assimilated tidal elevations as a reference solution. From simulated velocities and depths, dissipation within the global model is estimated and allows us to pinpoint dissipation at high resolution. Boundary layer dissipation is extremely focused with 1.4% of the ocean accounting for 90% of the total. Internal tide friction is much more distributed with 16.7% of the ocean accounting for 90% of the total. Often highly regional dissipation can impact basin‐scale and even ocean wide tides. Optimized boundary layer friction parameters correlate very well with the physical characteristics of the locality with high friction factors associated with energetic tidal regions, deep ocean island chains, and ice covered areas. Global complex M2tide errors are 1.94 cm in deep waters. Total global boundary layer and internal tide dissipation are estimated, respectively, at 1.83 and 1.49 TW. This continues the trend in the literature toward attributing more dissipation to internal tides. 
    more » « less
  3. The effects of horizontal resolution and wave drag damping on the semidiurnal M2 tidal energetics are studied for two realistically-forced global HYbrid Coordinate Ocean Model (HYCOM) simulations with 41 layers and horizontal resolutions of 8 km (H12) and 4 km (H25). In both simulations, the surface tidal error is minimized by tuning the strength of the linear wave drag, which is a parameterization of the surface-tide energy conversion to the unresolved baroclinic wave modes. In both simulations the M2 surface tide error with TPXO8-atlas, an altimetry constrained model, is 2.6 cm. Compared to H12, the surface tide energy conversion to the resolved vertical modes is increased by 50% in H25. This coincides with an equivalent reduction in the tuned loss of energy from the surface tide to the wave drag. For the configurations studied here, the horizontal and not the vertical resolution is the factor limiting the number of vertical modes that are resolved in most of the global ocean: modes 1–2 in H12 and modes 1–5 in H25. The wave drag also dampens the resolved internal tides. The 40% reduction in wave-drag strength does not result in a proportional increase in the mode-1 energy density in H25. In the higher-resolution simulations, topographic mode-scattering and wave–wave interactions are better resolved. This allows for an energy flux out of mode 1 to the higher modes, mitigating the need for an internal tide damping term. The HYCOM simulations are validated with analytical conversion models and altimetry-inferred sea-surface height, fluxes, and surface tide dissipation. H25 agrees best with these data sets to within 10%. To facilitate the comparison of stationary tide signals extracted from time series with different durations, we successfully apply a spatially-varying correction factor. 
    more » « less
  4. Seventy‐five days of sea surface height measurements made by the Surface Water and Ocean Topography (SWOT) mission from 7 September to 21 November 2023 are used to explore SWOT's capability of observing internal tides. Mode‐1 internal tides are mapped by our updated mapping technique. SWOT‐75d represents a 75‐day instantaneous model. Nadir‐30y is constructed using 30 years of nadir altimetry data from 1993 to 2022 and represents a climate normal. The nadir altimetry data in 2023 are used for model evaluation. Despite its large errors, SWOT‐75d reveals the basic features of the global mode‐1 internal tide field, and causes positive variance reduction in regions of strong internal tides. Nadir‐30y performs better overall, but SWOT‐75d performs better in the tropical South Atlantic Ocean, the central North Pacific Ocean, and the Melanesian region. Evaluation using seasonally subsetted altimetry data reveals that internal tides have significant temporal variations. SWOT‐75d performs the best in fall, because the model is constructed using data largely in fall. SWOT‐75d has large phase anomalies, which are spatially smoothed and used to adjust the phases in Nadir‐30y. The phase‐adjusted model can better make internal tide correction for SWOT and its performance is improved by 20%. Our results demonstrate that (a) mode‐1 internal tides can be extracted from 75 days of SWOT data by our mapping technique, and (b) the instantaneous internal tide model can be used to improve internal tide correction for SWOT. 
    more » « less
  5. Abstract This study showcases a global, heterogeneously coupled total water level system wherein salinity and temperature outputs from a coarser‐resolution (12 km) ocean general circulation model are used to calculate density‐driven terms within a global, higher‐resolution (2.5 km) depth‐averaged total water level model. We demonstrate that the inclusion of baroclinic forcing in the barotropic model requires modification of the internal wave drag term to prevent excess degradation of tidal results compared to the barotropic model. By scaling the internal tide dissipation by an easy to calculate dissipation ratio, the resulting heterogeneously coupled model has complex root mean square errors (RMSE) of 2.27 cm in the deep ocean and 12.16 cm in shallow waters for the tidal constituent. While this represents a 10%–20% deterioration as compared to the barotropic model, the improvements in total water level prediction more than offset this degradation. Global median RMSE compared to observations of total water levels, 30‐day sea levels, and non‐tidal residuals improve by 1.86 (18.5%), 2.55 (42.5%), and 0.36 (5.3%) cm respectively. The drastic improvement in model performance highlights the importance of including density‐driven effects within global hydrodynamic models and will help to improve the results of both hindcasts and forecasts in modeling extreme and nuisance flooding. With only an 11% increase in model run time compared to the fully barotropic total water level model, this approach paves the way for high resolution coastal water level and flood models to be used alongside climate models, improving operational forecasting of total water levels. 
    more » « less