The concept for fabrication of waveguides by an in‐volume laser direct writing in single‐crystal silicon is explored using a nanosecond pulse laser. The key innovation of this technology relies on the generation of amorphous silicon, which has a higher refractive index than that of crystalline silicon. Herein, transmission electron microscopy (TEM) together with selected area electron diffraction (SAED) and high‐resolution TEM (HRTEM) characterizations are used to better understand the microstructural evolutions. TEM images reveal the core‐shell structures, while SAED patterns and HRTEM directly observe the presence of amorphous silicon in the core surrounded by a crystalline silicon shell. With a lower laser scanning speed, a higher density of defects yet less amorphous silicon is formed by laser direct writing.
more »
« less
Curved waveguides in silicon written by a shaped laser beam
We demonstrate, for the first time, the direct writing of curved optical waveguides in monocrystalline silicon with curve radii from 2 mm to 6 cm. The bending loss of the curved waveguides is measured and a good agreement with theoretical values is found. Raman spectroscopy measurements suggest the formation of inhomogeneous amorphous and polycrystalline phases in the laser-modified region. This direct laser-writing method may advance fabrication capabilities for integrated 3D silicon photonic devices.
more »
« less
- Award ID(s):
- 1903740
- PAR ID:
- 10224520
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 10
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 14201
- Size(s):
- Article No. 14201
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Direct laser writing (DLW) has been shown to render 3D polymeric optical components, including lenses, beam expanders, and mirrors, with submicrometer precision. However, these printed structures are limited to the refractive index and dispersive properties of the photopolymer. Here, we present the subsurface controllable refractive index via beam exposure (SCRIBE) method, a lithographic approach that enables the tuning of the refractive index over a range of greater than 0.3 by performing DLW inside photoresist-filled nanoporous silicon and silica scaffolds. Adjusting the laser exposure during printing enables 3D submicron control of the polymer infilling and thus the refractive index and chromatic dispersion. Combining SCRIBE’s unprecedented index range and 3D writing accuracy has realized the world’s smallest (15 µm diameter) spherical Luneburg lens operating at visible wavelengths. SCRIBE’s ability to tune the chromatic dispersion alongside the refractive index was leveraged to render achromatic doublets in a single printing step, eliminating the need for multiple photoresins and writing sequences. SCRIBE also has the potential to form multicomponent optics by cascading optical elements within a scaffold. As a demonstration, stacked focusing structures that generate photonic nanojets were fabricated inside porous silicon. Finally, an all-pass ring resonator was coupled to a subsurface 3D waveguide. The measured quality factor of 4600 at 1550 nm suggests the possibility of compact photonic systems with optical interconnects that traverse multiple planes. SCRIBE is uniquely suited for constructing such photonic integrated circuits due to its ability to integrate multiple optical components, including lenses and waveguides, without additional printed supports.more » « less
-
The nature of structural changes of nanosecond laser modification inside silicon is investigated. Raman spectroscopy and transmission electron microscopy measurements of cross sections of the modified channels reveal highly localized crystal deformation. Raman spectroscopy measurements prove the existence of amorphous silicon inside nanosecond laser induced modifications, and the percentage of amorphous silicon is calculated based on the Raman spectrum. For the first time, the high-resolution transmission electron microscopy images directly show the appearance of amorphous silicon inside nanosecond laser induced modifications, which corroborates the indirect measurements from Raman spectroscopy. The laser modified channel consists of a small amount of amorphous silicon embedded in a disturbed crystal structure accompanied by strain. This finding may explain the origin of the positive refractive index change associated with the written channels that may serve as optical waveguides.more » « less
-
Abstract Direct laser writing (DLW) via two‐photon polymerization is an emerging highly precise technique for the fabrication of intricate cellular scaffolds. Despite recent progress in using two‐photon‐polymerized scaffolds to probe fundamental cell behaviors, new methods to direct and modulate microscale cell alignment and selective cell adhesion using two‐photon‐polymerized microstructures are of keen interest. Here, a DLW‐fabricated 2D and 3D hydrogel microstructures, with alternating soft and stiff regions, for precisely controlled cell alignment are reported. The use of both cell‐adhesive and cell‐repellent hydrogels allows selective adhesion and alignment of human mesenchymal stem cells within the printed structure. Importantly, DLW patterning enables cell alignment on flat surfaces as well as irregular and curved 3D microstructures, which are otherwise challenging to pattern with cells.more » « less
-
Abstract Silicon waveguides have enabled large‐scale manipulation and processing of near‐infrared optical signals on chip. Yet, expanding the bandwidth of guided waves to other frequencies will further increase the functionality of silicon as a photonics platform. Frequency multiplexing by integrating additional architectures is one approach to the problem, but this is challenging to design and integrate within the existing form factor due to scaling with the free‐space wavelength. This paper demonstrates that a hexagonal boron nitride (hBN)/silicon hybrid waveguide can simultaneously enable dual‐band operation at both mid‐infrared (6.5–7.0 µm) and telecom (1.55 µm) frequencies, respectively. The device is realized via the lithography‐free transfer of hBN onto a silicon waveguide, maintaining near‐infrared operation. In addition, mid‐infrared waveguiding of the hyperbolic phonon polaritons (HPhPs) supported in hBN is induced by the index contrast between the silicon waveguide and the surrounding air underneath the hBN, thereby eliminating the need for deleterious etching of the hyperbolic medium. The behavior of HPhP waveguiding in both straight and curved trajectories is validated within an analytical waveguide theoretical framework. This exemplifies a generalizable approach based on integrating hyperbolic media with silicon photonics for realizing frequency multiplexing in on‐chip photonic systems.more » « less
An official website of the United States government
