ObjectiveIdentify factors that impact parents’ decisions about allowing an unaccompanied child to ride in an autonomous vehicle (AV). BackgroundAVs are being tested in several U.S. cities and on highways in multiple states. Meanwhile, suburban parents are using ridesharing services to shuttle children from school to extracurricular activities. Parents may soon be able to hire AVs to transport children. MethodNineteen parents of 8- to 16-year-old children, and some of their children, rode in a driving simulator in autonomous mode, then were interviewed. Parents also participated in focus groups. Topics included minimum age for solo child passengers, types of trips unaccompanied children might take, and vehicle features needed to support child passengers. ResultsParents would require two-way audio communication and prefer video feeds of vehicle interiors, seatbelt checks, automatic locking, secure passenger identification, and remote access to vehicle information. Parents cited convenience as the greatest benefit and fear that AVs could not protect passengers during unplanned trip interruptions as their greatest concern. ConclusionManufacturers have an opportunity to design family-friendly AVs from the outset, rather than retrofit them to be safe for child passengers. More research, especially usability studies where families interact with technology prototypes, is needed to understand how AV design impacts child passengers. ApplicationPotential applications of this research include not only designing vehicles that can be used to safely transport children, seniors who no longer drive, and individuals with disabilities but also developing regulations, policies, and societal infrastructure to support safe child transport via AVs.
more »
« less
SCCS: Smart Cloud Commuting System with Shared Autonomous Vehicles
In this paper we advocate a forward-looking, ambitious and disruptive smart cloud commuting system (SCCS) for future smart cities based on shared AVs. Employing giant pools of AVs of varying sizes, SCCS seeks to supplant and integrate various modes of transport in a unified, on-demand fashion, and provides passengers with a fast, convenient, and low cost transport service for their daily commuting needs. To explore feasibility and efficiency gains of the proposed SCCS, we model SCCS as a queueing system with passengers' trip demands (as jobs) being served by the AVs (as servers). Using a 1-year real trip dataset from Shenzhen China, we quantify (i) how design choices, such as the numbers of depots and AVs, affect the passenger waiting time and vehicle utilization; and (ii) how much efficiency gains (i.e., reducing the number of service vehicles, and improving the vehicle utilization) can be obtained by SCCS comparing to the current taxi system. Our results demonstrate that the proposed SCCS system can serve the trip demands with 22% fewer vehicles and 37% more vehicle utilization, which shed lights on the design feasibility of future smart transportation system.
more »
« less
- PAR ID:
- 10225183
- Date Published:
- Journal Name:
- IEEE Transactions on Big Data
- ISSN:
- 2372-2096
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future.more » « less
-
Increasingly large trip demands have strained urban transportation capacity, which consequently leads to traffic congestion and rapid growth of greenhouse gas emissions. In this work, we focus on achieving sustainable transportation by incentivizing passengers to switch from private cars to public transport. We address the following challenges. First, the passengers incur inconvenience costs when changing their transit behaviors due to delay and discomfort, and thus need to be reimbursed. Second, the inconvenience cost, however, is unknown to the government when choosing the incentives. Furthermore, changing transit behaviors raises privacy concerns from passengers. An adversary could infer personal information (e.g., daily routine, region of interest, and wealth) by observing the decisions made by the government, which are known to the public. We adopt the concept of differential privacy and propose privacy-preserving incentive designs under two settings, denoted as two-way communication and one-way communication. Under two-way communication, passengers submit bids and then the government determines the incentives, whereas in one-way communication, the government simply sets a price without acquiring information from the passengers. We formulate the problem under two-way communication as a mixed integer linear program and propose a polynomial-time approximation algorithm. We show the proposed approach achieves truthfulness, individual rationality, social optimality, and differential privacy. Under one-way communication, we focus on how the government should design the incentives without revealing passengers’ inconvenience costs while still preserving differential privacy. We formulate the problem as a convex program and propose a differentially private and near-optimal solution algorithm. A numerical case study using the Caltrans Performance Measurement System (PeMS) data source is presented as evaluation. The results show that the proposed approaches achieve a win-win situation in which both the government and passengers obtain non-negative utilities.more » « less
-
Fog computing has been advocated as an enabling technology for computationally intensive services in connected smart vehicles. Most existing works focus on analyzing and opti- mizing the queueing and workload processing latencies, ignoring the fact that the access latency between vehicles and fog/cloud servers can sometimes dominate the end-to-end service latency. This motivates the work in this paper, where we report a five- month urban measurement study of the wireless access latency between a connected vehicle and a fog computing system sup- ported by commercially available multi-operator LTE networks. We propose AdaptiveFog, a novel framework for autonomous and dynamic switching between different LTE operators that implement fog/cloud infrastructure. The main objective here is to maximize the service confidence level, defined as the probability that the tolerable latency threshold for each supported type of service can be guaranteed. AdaptiveFog has been implemented on a smart phone app, running on a moving vehicle. The app periodically measures the round-trip time between the vehicle and fog/cloud servers. An empirical spatial statistic model is established to characterize the spatial variation of the latency across the main driving routes of the city. To quantify the perfor- mance difference between different LTE networks, we introduce the weighted Kantorovich-Rubinstein (K-R) distance. An optimal policy is derived for the vehicle to dynamically switch between LTE operators’ networks while driving. Extensive analysis and simulation are performed based on our latency measurement dataset. Our results show that AdaptiveFog achieves around 30% and 50% improvement in the confidence level of fog and cloud latency, respectively.more » « less
-
null (Ed.)Accurately profiling potholes on road surfaces not only helps eliminate safety related concerns and improve commuting efficiency for drivers, but also reduces unnecessary maintenance cost for transportation agencies. In this paper, we propose a smartphone-based system that is capable of precisely estimating the length and depth of potholes, and introduce a holistic design on pothole data collection, profile aggregation and pothole warning and reporting. The proposed system relies on the built-in inertial sensors of vehicle-carried smartphones to estimate pothole profiles, and warn the driver about incoming potholes. Because of the difference in driving behaviors and vehicle suspension systems, a major challenge in building such system is how to aggregate conflicting sensory reports from multiple participating vehicles. To tackle this challenge, we propose a novel reliability-aware data aggregation algorithm called Reliability Adaptive Truth Discovery (RATD). It infers the reliability for each data source and aggregates pothole profiles in an unsupervised fashion. Our field test shows that the proposed system can effectively estimate pothole profiles, and the RATD algorithm significantly improves the profiling accuracy compared with popular data aggregation methods.more » « less
An official website of the United States government

