skip to main content


Title: SCCS: Smart Cloud Commuting System with Shared Autonomous Vehicles
In this paper we advocate a forward-looking, ambitious and disruptive smart cloud commuting system (SCCS) for future smart cities based on shared AVs. Employing giant pools of AVs of varying sizes, SCCS seeks to supplant and integrate various modes of transport in a unified, on-demand fashion, and provides passengers with a fast, convenient, and low cost transport service for their daily commuting needs. To explore feasibility and efficiency gains of the proposed SCCS, we model SCCS as a queueing system with passengers' trip demands (as jobs) being served by the AVs (as servers). Using a 1-year real trip dataset from Shenzhen China, we quantify (i) how design choices, such as the numbers of depots and AVs, affect the passenger waiting time and vehicle utilization; and (ii) how much efficiency gains (i.e., reducing the number of service vehicles, and improving the vehicle utilization) can be obtained by SCCS comparing to the current taxi system. Our results demonstrate that the proposed SCCS system can serve the trip demands with 22% fewer vehicles and 37% more vehicle utilization, which shed lights on the design feasibility of future smart transportation system.  more » « less
Award ID(s):
1942680 1952085
NSF-PAR ID:
10225183
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Big Data
ISSN:
2372-2096
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Objective: Identify factors that impact parents’ decisions about allowing an unaccompanied child to ride in an autonomous vehicle (AV). Background: AVs are being tested in several U.S. cit-ies and on highways in multiple states. Meanwhile, suburban parents are using ride sharing services to shuttle children from school to extracurricular activities. Parents may soon be able to hire AVs to transport children. Method: Nineteen parents of 8- to 16-year-old children, and some of their children, rode in a driving simulator in autonomous mode, then were interviewed. Parents also participated in focus groups. Topics included minimum age for solo child passengers, types of trips unaccompanied children might take, and vehicle features needed to support child passengers. Results: Parents would require two-way audio communication and prefer video feeds of vehicle interiors, seat belt checks, automatic locking, secure passenger identification, and remote access to vehicle information. Parents cited convenience as the greatest benefit and fear that AVs could not pro-ect passengers during unplanned trip interruptions as their greatest concern. Conclusion: Manufacturers have an opportunity to design family-friendly AVs from the outset, rather than retro-fit them to be safe for child passengers. More research, especially usability studies where families interact with technology prototypes, is needed to understand how AV design impacts child passengers. Application: Potential applications of this research include not only designing vehicles that can be used to safely transport children, seniors who no longer drive, and individuals with disabilities but also developing regulations, policies, and societal infrastructure to support safe child transport via AVs 
    more » « less
  2. null (Ed.)
    The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future. 
    more » « less
  3. Increasingly large trip demands have strained urban transportation capacity, which consequently leads to traffic congestion and rapid growth of greenhouse gas emissions. In this work, we focus on achieving sustainable transportation by incentivizing passengers to switch from private cars to public transport. We address the following challenges. First, the passengers incur inconvenience costs when changing their transit behaviors due to delay and discomfort, and thus need to be reimbursed. Second, the inconvenience cost, however, is unknown to the government when choosing the incentives. Furthermore, changing transit behaviors raises privacy concerns from passengers. An adversary could infer personal information (e.g., daily routine, region of interest, and wealth) by observing the decisions made by the government, which are known to the public. We adopt the concept of differential privacy and propose privacy-preserving incentive designs under two settings, denoted as two-way communication and one-way communication. Under two-way communication, passengers submit bids and then the government determines the incentives, whereas in one-way communication, the government simply sets a price without acquiring information from the passengers. We formulate the problem under two-way communication as a mixed integer linear program and propose a polynomial-time approximation algorithm. We show the proposed approach achieves truthfulness, individual rationality, social optimality, and differential privacy. Under one-way communication, we focus on how the government should design the incentives without revealing passengers’ inconvenience costs while still preserving differential privacy. We formulate the problem as a convex program and propose a differentially private and near-optimal solution algorithm. A numerical case study using the Caltrans Performance Measurement System (PeMS) data source is presented as evaluation. The results show that the proposed approaches achieve a win-win situation in which both the government and passengers obtain non-negative utilities. 
    more » « less
  4. null (Ed.)
    Although urban transit systems (UTS) often have fixed vehicle capacity and relatively constant departure headways, they may need to accommodate dramatically fluctuating passenger demands over space and time, resulting in either excessive passenger waiting or vehicle capacity and energy waste. Therefore, on the one hand, optimal operations of UTS rely on accurate modeling of passenger queuing dynamics, which is particularly complex on a multistop transit corridor. On the other hand, capacities of transit vehicles can be made variable and adaptive to time-variant passenger demand so as to minimize energy waste, especially with the emergence of modular vehicle technologies. This paper investigates operations of a multistop transit corridor in which vehicles may have different capacities across dispatches. We specify skewed time coordinates to simplify the problem structure while incorporating traffic congestion. Then, we propose a mixed integer linear programming model that determines the optimal dynamic headways and vehicle capacities over the study time horizon to minimize the overall system cost for the transit corridor. In particular, the proposed model considers a realistic multistop first-in, first-out (MSFIFO) rule that gives the same boarding priority to passengers arriving at a station in the same time interval yet with different destinations. A customized dynamic programming (DP) algorithm is proposed to solve this model efficiently. To circumvent the rapid increase of the state space of a typical DP algorithm, we analyze the theoretical properties of the investigated problem and identify upper and lower bounds to a feasible solution. The bounds largely reduce the state space during the DP iterations and greatly improve the efficiency of the proposed DP algorithm. The state dimensions are also reduced with the MSFIFO rule such that all queues with different destinations at the same origin can be tracked with a single boarding position state variable at each stage. A hypothetical example and a real-world case study show that the proposed DP algorithm greatly outperforms a state-of-the-art commercial solver (Gurobi) in both solution quality and time. 
    more » « less
  5. null (Ed.)
    Accurately profiling potholes on road surfaces not only helps eliminate safety related concerns and improve commuting efficiency for drivers, but also reduces unnecessary maintenance cost for transportation agencies. In this paper, we propose a smartphone-based system that is capable of precisely estimating the length and depth of potholes, and introduce a holistic design on pothole data collection, profile aggregation and pothole warning and reporting. The proposed system relies on the built-in inertial sensors of vehicle-carried smartphones to estimate pothole profiles, and warn the driver about incoming potholes. Because of the difference in driving behaviors and vehicle suspension systems, a major challenge in building such system is how to aggregate conflicting sensory reports from multiple participating vehicles. To tackle this challenge, we propose a novel reliability-aware data aggregation algorithm called Reliability Adaptive Truth Discovery (RATD). It infers the reliability for each data source and aggregates pothole profiles in an unsupervised fashion. Our field test shows that the proposed system can effectively estimate pothole profiles, and the RATD algorithm significantly improves the profiling accuracy compared with popular data aggregation methods. 
    more » « less