skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thirty Years of Radio Observations of Type Ia SN 1972E and SN 1895B: Constraints on Circumstellar Shells
Award ID(s):
1751874
PAR ID:
10225200
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
894
Issue:
1
ISSN:
1538-4357
Page Range / eLocation ID:
39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Four novel ternary phases have been prepared in the system Ca–Li–Sn using both the metal flux method and conventional high-temperature synthesis. Each of the obtained compositions represents its own (new) structure type, and the structures feature distinct polyanionic Sn units. Ca 4 LiSn 6 (space group Pbcm , Pearson symbol oP 44) accommodates infinite chains, made up of cyclopentane-like [Sn 5 ]-rings, which are bridged by Sn atoms. The Sn atoms in this structure are two- and three-bonded. The anionic substructure of Ca 9 Li 6+x Sn 13–x ( x ≈ 0.28, space group C 2/ m , Pearson symbol mS 56) displays extensive mixing of Li and Sn and combination of single-bonded and hypervalent interactions between the Sn atoms. Hypervalent bonding is also pronounced in the structure of the third compound, Ca 2 LiSn 3 (space group Pmm 2, Pearson symbol oP 18) with quasi-two-dimensional polyanionic subunits and a variety of coordination environments of the Sn atoms. One-dimensional [Sn 10 ]-chains with an intricate topology of cis - and trans -Sn–Sn bonds exist in the structure of Ca 9–x Li 2 Sn 10 ( x ≈ 0.16, space group C 2/ m , Pearson symbol mS 42), and the Sn–Sn bonding in this case demonstrates the characteristics of an intermediate between single- and double- bond-order. The peculiarities of the bonding are discussed in the context of the Zintl approach, which captures the essence of the main chemical interactions. The electronic structures of all four compounds have also been analyzed in full detail using first-principles calculations. 
    more » « less
  2. Abstract The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu3Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond. 
    more » « less
  3. Tin (Sn) films are electrodeposited on Au seed layers for the investigation of superconductivity. The effects of the presence of suppressing additives in electrolyte, the thickness of Sn films, and the room temperature aging of deposited Sn films on the superconducting transition behavior are systematically studied. In addition, the crystallographic structure of electrodeposited Sn and its evolution along with aging time are characterized and are discussed in conjunction with the superconductivity behavior. The current work represents an important step towards the processing of technologically viable superconducting devices. 
    more » « less