skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Superconductivity of Electrodeposited Sn Films
Tin (Sn) films are electrodeposited on Au seed layers for the investigation of superconductivity. The effects of the presence of suppressing additives in electrolyte, the thickness of Sn films, and the room temperature aging of deposited Sn films on the superconducting transition behavior are systematically studied. In addition, the crystallographic structure of electrodeposited Sn and its evolution along with aging time are characterized and are discussed in conjunction with the superconductivity behavior. The current work represents an important step towards the processing of technologically viable superconducting devices.  more » « less
Award ID(s):
1941820 2016541
PAR ID:
10424838
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
3
ISSN:
0013-4651
Page Range / eLocation ID:
032506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ReMo binary alloy films with a maximum Mo content of 25 at. % are successfully electrodeposited using high concentration acetate solutions in the presence of citric acid. The electrochemical behavior of the ReMo alloy is studied using cyclic voltammetry and anodic stripping methods. Different techniques, including electron microscopy, x-ray diffraction, and four-point probe resistance measurements at cryogenic temperature, are used to characterize the surface morphology, crystal structure, and superconducting critical temperature of alloys, respectively. While all films exhibit a crystalline hcp phase after 700 °C annealing, the film with the highest 25 at. % Mo content shows a second crystalline cubic phase. Mo doping preserves the enhanced superconducting transition temperature (Tc) in electrodeposited amorphous Re films and improves the stability of Tc against thermal annealing at a temperature of 200 °C. This is the first successful demonstration to use a dopant to stabilize the enhanced Tc of electrodeposited films, enabling the fabrication and operation of superconducting connectors above the intrinsic Tc of the materials. 
    more » « less
  2. Ruthenium (Ru) is a promising candidate for next-generation electronic interconnects due to its low resistivity, small mean free path, and superior electromigration reliability at nanometer scales. In addition, Ru exhibits superconductivity below 1 K, with resistance to oxidation, low diffusivity, and a small superconducting gap, making it a potential material for superconducting qubits and Josephson Junctions. Here, we investigate the superconducting behavior of Ru thin films (11.9–108.5 nm thick), observing transition temperatures from 657.9 to 557 mK. A weak thickness dependence appears in the thinnest films, followed by a conventional inverse thickness dependence in thicker films. Magnetotransport studies reveal type-II superconductivity in the dirty limit (ξ ≫ l), with coherence lengths ranging from 13.5 to 27 nm. Finally, oxidation resistance studies confirm minimal RuOx growth after seven weeks of air exposure. These findings provide key insights for integrating Ru into superconducting electronic devices. 
    more » « less
  3. The nature of superconductivity in SrTiO 3 , the first oxide superconductor to be discovered, remains a subject of intense debate several decades after its discovery. SrTiO 3 is also an incipient ferroelectric, and several recent theoretical studies have suggested that the two properties may be linked. To investigate whether such a connection exists, we grew strained, epitaxial SrTiO 3 films, which are known to undergo a ferroelectric transition. We show that, for a range of carrier densities, the superconducting transition temperature is enhanced by up to a factor of two compared to unstrained films grown under the same conditions. Moreover, for these films, superconductivity emerges from a resistive state. We discuss the localization behavior in the context of proximity to ferroelectricity. The results point to new opportunities to enhance superconducting transition temperatures in oxide materials. 
    more » « less
  4. Abstract We report the superconductivity of the topological nodal-line semimetal candidate Sn x NbSe 2- δ with a noncentrosymmetric crystal structure. The superconducting transition temperature T c of Sn x NbSe 2- δ drastically varies with the Sn concentration x and the Se deficiency δ , and reaches 12 K, relatively higher than those of known topological superconductors. The upper critical field of this compound shows unusual temperature dependence, inconsistent with the WHH theory for conventional type-II superconductors. In a low-T c sample, the zero-temperature limit of the upper critical field parallel to the ab plane exceeds the Pauli paramagnetic limit estimated from the simple BCS weak coupling model by a factor of ∼ 2, suggestive of unusual superconductivity stabilized in Sn x NbSe 2- δ . Together with the robust superconductivity against disorder, these observations indicate that Sn x NbSe 2- δ is a promising candidate to explore topological superconductivity. 
    more » « less
  5. For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films. 
    more » « less