skip to main content

Title: Towards an ankle-foot orthosis powered by a dielectric elastomer actuator
Foot drop is the inability to dorsiflex the ankle (raise the toes) due to neuromuscular impairment, and this common condition can cause trips and falls. Current treatments for chronic foot drop provide dorsiflexion support, but they either impede ankle push off or are not suitable for all patients. Powered ankle-foot orthosis (AFO) can counteract foot drop without these drawbacks, but they are heavy and bulky and have short battery life. To counteract foot drop without the drawbacks of current treatments or powered AFO, we designed and built an AFO powered by dielectric elastomer actuators (DEAs), a type of artificial muscle technology. This paper presents our design and the results of benchtop testing. We found that the DEA AFO can provide 49 % of the dorsiflexion support necessary to raise the foot. Further, charging the DEAs reduced the effort that would be required for plantarflexion compared to that with passive DEA behavior, and this operation could be powered for 7000 steps or more in actual operation. DEAs are a promising approach for building an AFO that counteracts foot drop without impeding plantarflexion, and they may prove useful for other powered prosthesis and orthosis designs.  more » « less
Award ID(s):
1830360 1953908
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: This study, the first of its kind, originated with the need for a brace (an ankle foot orthosis), to constrain ankle plantarflexion and dorsiflexion within a motion threshold of <5deg. A conventional thermoplastic, solid brace failed during a quasi-static loading study, informing the investigation and development of an experimental carbon composite brace, maximizing stiffness and proximity of shank and foot cylindrical shells to provide the required degree of control. Methods: Two experiments were conducted: a quasi-static loading study, using cadaveric limbs (n =2), and a gait study with healthy subjects (n =14). Conditions tested were STOP, FREE, and CONTROL. Data for all studies were collected using six motion-capture cameras (Vicon, Oxford, UK; 120 Hz) tracking bone-anchored markers (cadaveric limbs) and skin-anchored markers (subjects). In the quasi-static loading study, loading conditions were congruent with the gait study. Study 1 involved a quasi-static loading analysis using cadaveric limbs, compared motion data from a conventional thermoplastic solid brace and the experimental brace. Study 2 involved quantifying ankle plantarflexion and dorsiflexion in subjects during treadmill walking, in brace STOP, FREE, and CONTROL conditions. Findings: The experimental brace in STOP condition consistently constrained ankle plantarflexion and dorsiflexion below the motion threshold of <5 deg, across all studies. Interpretation: Collectively, these findings demonstrate (1) that a conventional thermoplastic, solid brace was ineffective for clinical applications that required significant motion control, and (2) that ankle motion control is most effective when considered as a relationship between the brace, the ankle-foot complex, and the external forces that affect them both. 
    more » « less
  2. Though the rabbit is a common animal model in musculoskeletal research, there are very limited data reported on healthy rabbit biomechanics. Our objective was to quantify the normative hindlimb biomechanics (kinematics and kinetics) of six New Zealand White rabbits (three male, three female) during the stance phase of gait. We measured biomechanics by synchronously recording sagittal plane motion and ground contact pressure using a video camera and pressure-sensitive mat, respectively. Both foot angle ( i.e ., angle between foot and ground) and ankle angle curves were unimodal. The maximum ankle dorsiflexion angle was 66.4 ± 13.4° (mean ± standard deviation across rabbits) and occurred at 38% stance, while the maximum ankle plantarflexion angle was 137.2 ± 4.8° at toe-off (neutral ankle angle = 90 degrees). Minimum and maximum foot angles were 17.2 ± 6.3° at 10% stance and 123.3 ± 3.6° at toe-off, respectively. The maximum peak plantar pressure and plantar contact area were 21.7 ± 4.6% BW/cm 2 and 7.4 ± 0.8 cm 2 respectively. The maximum net vertical ground reaction force and vertical impulse, averaged across rabbits, were 44.0 ± 10.6% BW and 10.9 ± 3.7% BW∙s, respectively. Stance duration (0.40 ± 0.15 s) was statistically significantly correlated ( p < 0.05) with vertical impulse (Spearman’s ρ = 0.76), minimum foot angle ( ρ = −0.58), plantar contact length ( ρ = 0.52), maximum foot angle ( ρ = 0.41), and minimum foot angle ( ρ = −0.30). Our study confirmed that rabbits exhibit a digitigrade gait pattern during locomotion. Future studies can reference our data to quantify the extent to which clinical interventions affect rabbit biomechanics. 
    more » « less
  3. We introduce a new design method to tailor the physical structure of a powered ankle-foot orthosis to the wearer’s leg morphology and improve fit. We present a digital modeling and fabrication workflow that combines scan-based design, parametric configurable modeling, and additive manufacturing (AM) to enable the efficient creation of personalized ankle-foot orthoses with minimal lead-time and explicit inputs. The workflow consists of an initial one-time generic modeling step to generate a parameterized design that can be rapidly configured to customizable shapes and sizes using a design table. This step is then followed by a wearer-specific personalization step that consists of performing a 3D scan of the wearer’s leg, extracting key parameters of the wearer’s leg morphology, generating a personalized design using the configurable parametric design, and digital fabrication of the individualized ankle-foot orthosis using additive manufacturing. The paper builds upon the design of the Stevens Ankle-Foot Electromechanical (SAFE) orthosis presented in prior work and introduces a new, individualized structural design (SAFE II orthosis) that is modeled and fabricated using the presented digital workflow. The workflow is demonstrated by designing a personalized ankle-foot orthosis for an individual based on 3D scan data and printing a personalized design to perform preliminary fit testing. Implications of the presented methodology for the design and fabrication of future personalized powered orthoses are discussed, along with avenues for future work. 
    more » « less
  4. null (Ed.)
    The primary goal of an assist-as-needed (AAN) controller is to maximize subjects' active participation during motor training tasks while allowing moderate tracking errors to encourage human learning of a target movement. Impedance control is typically employed by AAN controllers to create a compliant force-field around the desired motion trajectory. To accommodate different individuals with varying motor abilities, most of the existing AAN controllers require extensive manual tuning of the control parameters, resulting in a tedious and time-consuming process. In this paper, we propose a reinforcement learning AAN controller that can autonomously reshape the force-field in real-time based on subjects' training performances. The use of action-dependent heuristic dynamic programming enables a model-free implementation of the proposed controller. To experimentally validate the controller, a group of healthy individuals participated in a gait training session wherein they were asked to learn a modified gait pattern with the help of a powered ankle-foot orthosis. Results indicated the potential of the proposed control strategy for robot-assisted gait training. 
    more » « less
  5. null (Ed.)
    Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots. 
    more » « less