skip to main content

Title: Candidate Periodically Variable Quasars from the Dark Energy Survey and the Sloan Digital Sky Survey
Abstract Periodically variable quasars have been suggested as close binary supermassive black holes. We present a systematic search for periodic light curves in 625 spectroscopically confirmed quasars with a median redshift of 1.8 in a 4.6 deg2 overlapping region of the Dark Energy Survey Supernova (DES-SN) fields and the Sloan Digital Sky Survey Stripe 82 (SDSS-S82). Our sample has a unique 20-year long multi-color (griz) light curve enabled by combining DES-SN Y6 observations with archival SDSS-S82 data. The deep imaging allows us to search for periodic light curves in less luminous quasars (down to r ∼23.5 mag) powered by less massive black holes (with masses ≳ 108.5M⊙) at high redshift for the first time. We find five candidates with significant (at >99.74% single-frequency significance in at least two bands with a global p-value of ∼7 × 10−4–3× 10−3 accounting for the look-elsewhere effect) periodicity with observed periods of ∼3–5 years (i.e., 1–2 years in rest frame) having ∼4–6 cycles spanned by the observations. If all five candidates are periodically variable quasars, this translates into a detection rate of ${\sim }0.8^{+0.5}_{-0.3}$% or ${\sim }1.1^{+0.7}_{-0.5}$ quasar per deg2. Our detection rate is 4–80 times larger than those found by previous searches using shallower surveys over larger more » areas. This discrepancy is likely caused by differences in the quasar populations probed and the survey data qualities. We discuss implications on the future direct detection of low-frequency gravitational waves. Continued photometric monitoring will further assess the robustness and characteristics of these candidate periodic quasars to determine their physical origins. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1715579
Publication Date:
NSF-PAR ID:
10225456
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here we report discovery of a periodicity (P=1607±7 days) at 99.95% significance (with a global p-value of ∼10−3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67−002813.7. Combining archival Sloan Digital Sky Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (restframe 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion disks. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disk. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302−102. Furthermore, the frequency dependence of the variability amplitudes disfavors Dopplermore »boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna.« less
  2. Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations,more »while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.« less
  3. ABSTRACT We report the results of the STRong lensing Insights into the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates with ESO Faint Object Spectrograph and Camera 2 on the NTT and Echellette Spectrograph and Imager on Keck, confirming 10 new lensed quasars and 10 quasar pairs. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged (DESJ0345−2545, z = 1.68), and one is quadruply imaged (quad: DESJ0053−2012, z = 3.8). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on Southern Astrophysical Research Telescope or Near InfraRed Camera 2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcsec. After spectroscopic follow-up, we extract multi-epoch grizY photometry of confirmed lensed quasars and contaminant quasar + star pairs from DES data using parametric multiband modelling, and compare variability in each system’s components. By measuring the reduced χ2 associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems. Based on our spectroscopic follow-up, thismore »variability information improves selection of lensed quasars and quasar pairs from 34-45 per cent to 51–70 per cent, with most remaining contaminants being star-forming galaxies. Using mock lensed quasar light curves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample, explained by the magnification bias and hence lower luminosity/more variable sources in quads.« less
  4. ABSTRACT We present the results of a new, deeper, and complete search for high-redshift 6.5 < z < 9.3 quasars over 977 deg2 of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven data set providing photometry in all bands Z, Y, J, H, Ks, for all sources detected by VIKING in J. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3, and 5 are the four known z > 6.5 quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-χ2 SED fitting. We find that: (i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag deeper, (ii) the minimum-χ2 SED-fitting method is extremely efficient but reaches 0.7 mag less deep than the BMC method, and selects only one of the four known quasars.more »We show that BMC candidates, rejected because their photometric SEDs have high χ2 values, include bright examples of galaxies with very strong [O iii] λλ4959,5007 emission in the Y band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint z > 7 quasars, not previously accounted for, and that requires better characterization.« less
  5. Abstract

    Active galactic nuclei (AGN) can vary significantly in their rest-frame optical/UV continuum emission, and with strong associated changes in broad line emission, on much shorter timescales than predicted by standard models of accretion disks around supermassive black holes. Most suchchanging-lookorchanging-stateAGN—and at higher luminosities, changing-look quasars (CLQs)—have been found via spectroscopic follow-up of known quasars showing strong photometric variability. The Time Domain Spectroscopic Survey of the Sloan Digital Sky Survey IV (SDSS-IV) includes repeat spectroscopy of large numbers of previously known quasars, many selected irrespective of photometric variability, and with spectral epochs separated by months to decades. Our visual examination of these repeat spectra for strong broad line variability yielded 61 newly discovered CLQ candidates. We quantitatively compare spectral epochs to measure changes in continuum and Hβbroad line emission, finding 19 CLQs, of which 15 are newly recognized. The parent sample includes only broad line quasars, so our study tends to find objects that have dimmed, i.e., turn-off CLQs. However, we nevertheless find four turn-on CLQs that meet our criteria, albeit with broad lines in both dim and bright states. We study the response of Hβand Mgiiemission lines to continuum changes. The Eddington ratios of CLQs are low, and/or theirmore »Hβbroad line width is large relative to the overall quasar population. Repeat quasar spectroscopy in the upcoming SDSS-V black hole Mapper program will reveal significant numbers of CLQs, enhancing our understanding of the frequency and duty cycle of such strong variability, and the physics and dynamics of the phenomenon.

    « less