skip to main content

Title: Quasars with Periodic Variability: Capabilities and Limitations of Bayesian Searches for Supermassive Black Hole Binaries in Time-Domain Surveys
Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations, more » while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here we report discovery of a periodicity (P=1607±7 days) at 99.95% significance (with a global p-value of ∼10−3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67−002813.7. Combining archival Sloan Digital Sky Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (restframe 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion disks. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disk. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302−102. Furthermore, the frequency dependence of the variability amplitudes disfavors Dopplermore »boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna.« less
  2. Abstract Periodically variable quasars have been suggested as close binary supermassive black holes. We present a systematic search for periodic light curves in 625 spectroscopically confirmed quasars with a median redshift of 1.8 in a 4.6 deg2 overlapping region of the Dark Energy Survey Supernova (DES-SN) fields and the Sloan Digital Sky Survey Stripe 82 (SDSS-S82). Our sample has a unique 20-year long multi-color (griz) light curve enabled by combining DES-SN Y6 observations with archival SDSS-S82 data. The deep imaging allows us to search for periodic light curves in less luminous quasars (down to r ∼23.5 mag) powered by less massive black holes (with masses ≳ 108.5M⊙) at high redshift for the first time. We find five candidates with significant (at >99.74% single-frequency significance in at least two bands with a global p-value of ∼7 × 10−4–3× 10−3 accounting for the look-elsewhere effect) periodicity with observed periods of ∼3–5 years (i.e., 1–2 years in rest frame) having ∼4–6 cycles spanned by the observations. If all five candidates are periodically variable quasars, this translates into a detection rate of ${\sim }0.8^{+0.5}_{-0.3}$% or ${\sim }1.1^{+0.7}_{-0.5}$ quasar per deg2. Our detection rate is 4–80 times larger than those found by previous searches using shallower surveys over largermore »areas. This discrepancy is likely caused by differences in the quasar populations probed and the survey data qualities. We discuss implications on the future direct detection of low-frequency gravitational waves. Continued photometric monitoring will further assess the robustness and characteristics of these candidate periodic quasars to determine their physical origins.« less
  3. ABSTRACT The Legacy Survey of Space and Time (LSST) by the Vera C. Rubin Observatory is expected to discover tens of millions of quasars. A significant fraction of these could be powered by coalescing massive black hole (MBH) binaries, since many quasars are believed to be triggered by mergers. We show that under plausible assumptions about the luminosity functions, lifetimes, and binary fractions of quasars, we expect the full LSST quasar catalogue to contain between 20 and 100 million compact MBH binaries with masses M = 105–9M⊙, redshifts z = 0–6, and orbital periods P = 1–70 d. Their light-curves are expected to be distinctly periodic, which can be confidently distinguished from stochastic red-noise variability, because LSST will cover dozens, or even hundreds of cycles. A very small subset of 10–150 ultracompact (P ≲ 1 d) binary quasars among these will, over ∼5–15 yr, evolve into the mHz gravitational-wave frequency band and can be detected by LISA. They can therefore be regarded as ‘LISA verification binaries’, analogous to short-period Galactic compact-object binaries. The practical question is how to find these handful of ‘needles in the haystack’ among the large number of quasars: this will likely require a tailored co-adding analysis optimized for thismore »purpose.« less
  4. ABSTRACT The bright quasar PG1302-102 has been identified as a candidate supermassive black hole binary from its near-sinusoidal optical variability. While the significance of its optical periodicity has been debated due to the stochastic variability of quasars, its multiwavelength variability in the ultraviolet (UV) and optical bands is consistent with relativistic Doppler boost caused by the orbital motion in a binary. However, this conclusion was based previously on sparse UV data that were not taken simultaneously with the optical data. Here, we report simultaneous follow-up observations of PG1302-102 with the Ultraviolet Optical Telescope on the Neil Gehrels Swift Observatory in six optical + UV bands. The additional nine Swift observations produce light curves roughly consistent with the trend under the Doppler boost hypothesis, which predicts that UV variability should track the optical, but with a ∼2.2 times higher amplitude. We perform a statistical analysis to quantitatively test this hypothesis. We find that the data are consistent with the Doppler boost hypothesis when we compare the the amplitudes in optical B-band and UV light curves. However, the ratio of UV to V-band variability is larger than expected and is consistent with the Doppler model, only if either the UV/optical spectral slopes vary,more »the stochastic variability makes a large contribution in the UV, or the sparse new optical data underestimate the true optical variability. We have evidence for the latter from comparison with the optical light curve from All-Sky Automated Survey for Supernovae. Additionally, the simultaneous analysis of all four bands strongly disfavours the Doppler boost model whenever Swift V band is involved. Additional, simultaneous optical + UV observations tracing out another cycle of the 5.2-yr proposed periodicity should lead to a definitive conclusion.« less
  5. ABSTRACT The variability of quasars across multiple wavelengths is a useful probe of physical conditions in active galactic nuclei. In particular, variable accretion rates, instabilities, and reverberation effects in the accretion disc of a supermassive black hole are expected to produce correlated flux variations in ultraviolet (UV) and optical bands. Recent work has further argued that binary quasars should exhibit strongly correlated UV and optical periodicities. Strong UV–optical correlations have indeed been established in small samples of (N ≲ 30) quasars with well-sampled light curves, and have extended the ‘bluer-when-brighter’ trend previously found within the optical bands. Here, we further test the nature of quasar variability by examining the observed-frame UV–optical correlations among bright quasars extracted from the Half Million Quasars (HMQ) catalogue. We identified a large sample of 1315 quasars in HMQ with overlapping UV and optical light curves from the Galaxy Evolution Explorer and the Catalina Real-time Transient Survey, respectively. We find that strong correlations exist in this much larger sample, but we rule out, at ∼95 per cent confidence, the simple hypothesis that the intrinsic UV and optical variations of all quasars are fully correlated. Our results therefore imply the existence of physical mechanism(s) that can generate uncorrelated opticalmore »and UV flux variations.« less