skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quasars with Periodic Variability: Capabilities and Limitations of Bayesian Searches for Supermassive Black Hole Binaries in Time-Domain Surveys
Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in AGN light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations, while the false detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs.  more » « less
Award ID(s):
1726534
PAR ID:
10315123
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Supermassive black hole binaries (SMBHBs) are an inevitable consequence of galaxy mergers. At sub-parsec separations, they are practically impossible to resolve, and the most promising technique is to search for quasars with periodic variability. However, searches for quasar periodicity in time-domain data are challenging due to the stochastic variability of quasars. In this paper, we used Bayesian methods to disentangle periodic SMBHB signals from intrinsic damped random walk (DRW) variability in active galactic nuclei light curves. We simulated a wide variety of realistic DRW and DRW+sine light curves. Their observed properties are modeled after the Catalina Real-time Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful analysis of parameter estimation and Bayesian model selection, we investigated the range of parameter space for which binary systems can be detected. We also examined which DRW signals can mimic periodicity and be falsely classified as binary candidates. We found that periodic signals are more easily detectable if the period is short or the amplitude of the signal is large compared to the contribution of the DRW noise. We saw similar detection rates both in the CRTS and LSST-like simulations, while the false-detection rate depends on the quality of the data and is minimal in LSST. Our idealized simulations provide an excellent way to uncover the intrinsic limitations in quasar periodicity searches and set the stage for future searches for SMBHBs. 
    more » « less
  2. Abstract Periodic signatures in time-domain observations of quasars have been used to search for binary supermassive black holes (SMBHs). These searches, across existing time-domain surveys, have produced several hundred candidates. The general stochastic variability of quasars, however, can masquerade as a false-positive periodic signal, especially when monitoring cadence and duration are limited. In this work, we predict the detectability of binary SMBHs in the upcoming Rubin Observatory Legacy Survey of Space and Time (LSST). We apply computationally inexpensive sinusoidal curve fits to millions of simulated LSST Deep Drilling Field light curves of both single, isolated quasars and binary quasars. The period and phase of simulated binary signals can generally be disentangled from quasar variability. Binary amplitude is overestimated and poorly recovered for two-thirds of potential binaries due to quasar accretion variability. Quasars with strong intrinsic variability can obscure a binary signal too much for recovery. We also find that the most luminous quasars mimic current binary candidate light curves and their properties: The false-positive rates are 60% for these quasars. The reliable recovery of binary period and phase for a wide range of input binary LSST light curves is promising for multi-messenger characterization of binary SMBHs. However, pure electromagnetic detections of binaries using photometric periodicity with amplitude greater than 0.1 mag will result in samples that are overwhelmed by false positives. This paper represents an important and computationally inexpensive way forward for understanding the true and false-positive rates for binary candidates identified by Rubin. 
    more » « less
  3. null (Ed.)
    Abstract Periodically variable quasars have been suggested as close binary supermassive black holes. We present a systematic search for periodic light curves in 625 spectroscopically confirmed quasars with a median redshift of 1.8 in a 4.6 deg2 overlapping region of the Dark Energy Survey Supernova (DES-SN) fields and the Sloan Digital Sky Survey Stripe 82 (SDSS-S82). Our sample has a unique 20-year long multi-color (griz) light curve enabled by combining DES-SN Y6 observations with archival SDSS-S82 data. The deep imaging allows us to search for periodic light curves in less luminous quasars (down to r ∼23.5 mag) powered by less massive black holes (with masses ≳ 108.5M⊙) at high redshift for the first time. We find five candidates with significant (at >99.74% single-frequency significance in at least two bands with a global p-value of ∼7 × 10−4–3× 10−3 accounting for the look-elsewhere effect) periodicity with observed periods of ∼3–5 years (i.e., 1–2 years in rest frame) having ∼4–6 cycles spanned by the observations. If all five candidates are periodically variable quasars, this translates into a detection rate of $${\sim }0.8^{+0.5}_{-0.3}$$% or $${\sim }1.1^{+0.7}_{-0.5}$$ quasar per deg2. Our detection rate is 4–80 times larger than those found by previous searches using shallower surveys over larger areas. This discrepancy is likely caused by differences in the quasar populations probed and the survey data qualities. We discuss implications on the future direct detection of low-frequency gravitational waves. Continued photometric monitoring will further assess the robustness and characteristics of these candidate periodic quasars to determine their physical origins. 
    more » « less
  4. ABSTRACT We study the optical gri photometric variability of a sample of 190 quasars within the SDSS Stripe 82 region that have long-term photometric coverage during ∼1998−2020 with SDSS, PanSTARRS-1, the Dark Energy Survey, and dedicated follow-up monitoring with Blanco 4m/DECam. With on average ∼200 nightly epochs per quasar per filter band, we improve the parameter constraints from a Damped Random Walk (DRW) model fit to the light curves over previous studies with 10–15 yr baselines and ≲ 100 epochs. We find that the average damping time-scale τDRW continues to rise with increased baseline, reaching a median value of ∼750 d (g band) in the rest frame of these quasars using the 20-yr light curves. Some quasars may have gradual, long-term trends in their light curves, suggesting that either the DRW fit requires very long baselines to converge, or that the underlying variability is more complex than a single DRW process for these quasars. Using a subset of quasars with better-constrained τDRW (less than 20 per cent of the baseline), we confirm a weak wavelength dependence of τDRW∝λ0.51 ± 0.20. We further quantify optical variability of these quasars over days to decades time-scales using structure function (SF) and power spectrum density (PSD) analyses. The SF and PSD measurements qualitatively confirm the measured (hundreds of days) damping time-scales from the DRW fits. However, the ensemble PSD is steeper than that of a DRW on time-scales less than ∼ a month for these luminous quasars, and this second break point correlates with the longer DRW damping time-scale. 
    more » « less
  5. ABSTRACT The Legacy Survey of Space and Time (LSST) by the Vera C. Rubin Observatory is expected to discover tens of millions of quasars. A significant fraction of these could be powered by coalescing massive black hole (MBH) binaries, since many quasars are believed to be triggered by mergers. We show that under plausible assumptions about the luminosity functions, lifetimes, and binary fractions of quasars, we expect the full LSST quasar catalogue to contain between 20 and 100 million compact MBH binaries with masses M = 105–9M⊙, redshifts z = 0–6, and orbital periods P = 1–70 d. Their light-curves are expected to be distinctly periodic, which can be confidently distinguished from stochastic red-noise variability, because LSST will cover dozens, or even hundreds of cycles. A very small subset of 10–150 ultracompact (P ≲ 1 d) binary quasars among these will, over ∼5–15 yr, evolve into the mHz gravitational-wave frequency band and can be detected by LISA. They can therefore be regarded as ‘LISA verification binaries’, analogous to short-period Galactic compact-object binaries. The practical question is how to find these handful of ‘needles in the haystack’ among the large number of quasars: this will likely require a tailored co-adding analysis optimized for this purpose. 
    more » « less