In modern smarthomes, temperature regulation is achieved through a mix of traditional and emergent technologies including air conditioning, heating, intelligent utilization of the effects of sun, wind, and shade as well as using stored heat and cold. To achieve the desired comfort for the inhabitants while minimizing environmental impact and cost, the home controller must predict how its actions will impact the temperature and other environmental factors in various parts of the home. The question we are investigating in this paper is whether the temperature values in different rooms in a home are predictable based on readings from sensors in the home. We are also interested in whether increased accuracy can be achieved by adding sensors to capture the state of doors and windows of the given room and/or the whole home, and what type of machine learning algorithms can take advantage of the additional information. As experimentation on real-world homes is highly expensive, we use ScaledHome, a 1:12 scale, IoT-enabled model of a smart home for data acquisition. Our experiments show that while additional data can improve the accuracy of the prediction, the type of machine learning models needs to be carefully adapted to the number of data features available.
more »
« less
IoT Augmented Physical Scale Model of a Suburban Home
Green homes require informed energy management decisions. For instance, it is preferable that a comfortable internal temperature is achieved through natural, energy-efficient means such as opening doors or lowering shades as opposed to turning on the air conditioning. This requires the control agent to understand the complex system dynamics of the home: will opening the window raise or lower the temperature in this particular situation? Unfortunately, developing mathematical models of a suburban home situated in its natural environment is a significant challenge, while performing real-world experiments is costly, takes a long time and depends on external circumstances beyond the control of the experimenter. In this paper, we describe the architecture of a physical, small scale model of a suburban home and its immediate exterior environment. Specific scenarios can be enacted using Internet of Things (IoT) actuators that control the doors and windows. We use a suite of IoT sensors to collect data during the scenario. We use deep learning-based temporal regression models to make predictions about the impact of specific actions on the temperature and humidity in the home.
more »
« less
- Award ID(s):
- 1852002
- PAR ID:
- 10225524
- Date Published:
- Journal Name:
- IEEE ICC 2020 Workshop on Convergent IoT (C-IoT)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The area of smart homes is one of the most popular for deploying smart connected devices. One of the most vulnerable aspects of smart homes is access control. Recent advances in IoT have led to several access control models being developed or adapted to IoT from other domains, with few specifically designed to meet the challenges of smart homes. Most of these models use role-based access control (RBAC) or attribute-based access control (ABAC) models. As of now, it is not clear what the advantages and disadvantages of ABAC over RBAC are in general, and in the context of smart-home IoT in particular. In this paper, we introduce HABACα, an attribute-based access control model for smart-home IoT. We formally define HABACα and demonstrate its features through two use-case scenarios and a proof-of-concept implementation. Furthermore, we present an analysis of HABACα as compared to the previously published EGRBAC (extended generalized role-based access control) model for smart-home IoT by first describing approaches for constructing HABACα specification from EGRBAC and vice versa in order to compare the theoretical expressiveness power of these models, and second, analyzing HABACα and EGRBAC models against standard criteria for access control models. Our findings suggest that a hybrid model that combines both HABACα and EGRBAC capabilities may be the most suitable for smart-home IoT, and probably more generally.more » « less
-
Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
-
Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
-
A key feature of smart home devices is monitoring the environment and recording data. These devices provide security via motion-detection video alerts, cost-savings via thermostat usage history, and peace of mind via functions like auto-locking doors or water leak detectors. At the same time, the sharing of this information in interpersonal relationships---though necessary---is currently accomplished on an all-or-nothing basis. This can easily lead to oversharing in a multi-user environment. Although prior work has studied people's perceptions of information sharing with vendors or ISPs, the sharing of household data among users who interact personally is less well understood. Interpersonal situations make data sharing much more context-based and, thus, more complicated. In this paper, we use themes from the theory of contextual integrity in an online survey (n=1,992) to study how people perceive data sharing with others in smart homes and inform future designs and research. Our results show that data recipients in a smart home can be reduced to three major groups, and data types matter more than device types. We also found that the types of access control desired by users can vary from scenario to scenario. Depending on whom they are sharing data with and about what data, participants expressed varying levels of comfort when presented with different types of access control (e.g., explicit approval versus time-limited access). Taken together, this provides strong evidence that a more dynamic access control system is needed, and we can design it in a more usable way.more » « less
An official website of the United States government

