- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10225814
- Journal Name:
- The European Physical Journal C
- Volume:
- 80
- Issue:
- 8
- ISSN:
- 1434-6044
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $$^{136}$$ 136 Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of $$^{136}$$ 136 Xe. Here, we show that its projected half-life sensitivity is $$2.4\times {10}^{27}\,{\hbox {year}}$$ 2.4 × 10 27 year , using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t $$\cdot $$ · year) in the energymore »
-
Abstract The nEXO neutrinoless double beta (0 νββ ) decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in 136 Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of 10 28 years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector.more »
-
Abstract The EXO-200 experiment searched for neutrinoless double-beta decay of 136 Xe with a single-phase liquid xenon detector. It used an active mass of 110 kg of 80.6%-enriched liquid xenon in an ultra-low background time projection chamber with ionization and scintillation detection and readout. This paper describes the design and performance of the various support systems necessary for detector operation, including cryogenics, xenon handling, and controls. Novel features of the system were driven by the need to protect the thin-walled detector chamber containing the liquid xenon, to achieve high chemical purity of the Xe, and to maintain thermal uniformity acrossmore »
-
Abstract We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp , $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep . The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep components is hindered by the double-beta decay of $$^{136}$$ 136 Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, $$\sinmore »
-
Abstract The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the
Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a$$^{222}$$ Rn activity concentration of$$^{222}$$ in$$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ of xenon. The knowledge of the distribution of the$$3.2\,\mathrm{t}$$ Rn sources allowed us to selectivelymore »$$^{222}$$