skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Coastal upwelling enhances abundance of a symbiotic diazotroph (UCYN-A) and its haptophyte host in the Arctic Ocean
The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host, Braarudosphaera bigelowii , has recently been found to fix dinitrogen (N 2 ) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, this response suggests that upwelling may enhance N 2 fixation as displaced coastal waters are advected offshore, potentially extending the duration of upwelling-induced phytoplankton blooms. Given that such events are projected to increase in intensity and number with ocean warming, upwelling-driven N 2 fixation as a feedback on climate merits investigation.  more » « less
Award ID(s):
1733564 2135537
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l−1 d−1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2fixation rates were higher (151.1 ± 112.7 fmol N cell−1 d−1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell−1 d−1). N2fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.

    more » « less
  2. null (Ed.)
    Abstract The microbial fixation of N 2 is the largest source of biologically available nitrogen (N) to the oceans. However, it is the most energetically expensive N-acquisition process and is believed inhibited when less energetically expensive forms, like dissolved inorganic N (DIN), are available. Curiously, the cosmopolitan N 2 -fixing UCYN-A/haptophyte symbiosis grows in DIN-replete waters, but the sensitivity of their N 2 fixation to DIN is unknown. We used stable isotope incubations, catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH), and nanoscale secondary ion mass spectrometry (nanoSIMS), to investigate the N source used by the haptophyte host and sensitivity of UCYN-A N 2 fixation in DIN-replete waters. We demonstrate that under our experimental conditions, the haptophyte hosts of two UCYN-A sublineages do not assimilate nitrate (NO 3 − ) and meet little of their N demands via ammonium (NH 4 + ) uptake. Instead the UCYN-A/haptophyte symbiosis relies on UCYN-A N 2 fixation to supply large portions of the haptophyte’s N requirements, even under DIN-replete conditions. Furthermore, UCYN-A N 2 fixation rates, and haptophyte host carbon fixation rates, were at times stimulated by NO 3 − additions in N-limited waters suggesting a link between the activities of the bulk phytoplankton assemblage and the UCYN-A/haptophyte symbiosis. The results suggest N 2 fixation may be an evolutionarily viable strategy for diazotroph–eukaryote symbioses, even in N-rich coastal or high latitude waters. 
    more » « less
  3. Abstract

    In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the15N2bubble release method and used to build empirical models of regional N2fixation via a random forest machine learning approach. N2fixation rates were then predicted from high‐resolution CTD and satellite data to infer the variability of its depth and surface distributions, respectively. Our findings suggest that the frontal mixing zone created conditions conducive to exceptionally high N2fixation rates (> 100 nmol N L−1d−1), which were likely driven by the haptophyte‐symbiont UCYN‐A. Above and below this hotspot, N2fixation rates were highest on the shelf due to the high particulate N concentrations there. Conversely, specific N2uptake rates, a biomass‐independent metric for diazotroph activity, were enhanced in the oligotrophic slope waters. Broadly, these observations suggest that N2fixation is favored offshore but occurs continuously across the shelf. Nevertheless, our model results indicate that there is a niche for diazotrophs along the coastline as phytoplankton populations begin to decline, likely due to exhaustion of coastal nutrients.

    more » « less
  4. Biological dinitrogen (N2) fixation is an important source of nitrogen (N) in low-latitude open oceans. The unusual N2-fixing unicellular cyanobacteria (UCYN-A)/haptophyte symbiosis has been found in an increasing number of unexpected environments, including northern waters of the Danish Straight and Bering and Chukchi Seas. We used nanoscale secondary ion mass spectrometry (nanoSIMS) to measure15N2uptake into UCYN-A/haptophyte symbiosis and found that UCYN-A strains identical to low-latitude strains are fixing N2in the Bering and Chukchi Seas, at rates comparable to subtropical waters. These results show definitively that cyanobacterial N2fixation is not constrained to subtropical waters, challenging paradigms and models of global N2fixation. The Arctic is particularly sensitive to climate change, and N2fixation may increase in Arctic waters under future climate scenarios.

    more » « less
  5. In the last decade, the known biogeography of nitrogen fixation in the ocean has been expanded to colder and nitrogen‐rich coastal environments. The symbiotic nitrogen‐fixing cyanobacteria group A (UCYN‐A) has been revealed as one of the most abundant and widespread nitrogen‐fixers, and includes several sublineages that live associated with genetically distinct but closely related prymnesiophyte hosts. The UCYN‐A1 sublineage is associated with an open ocean picoplanktonic prymnesiophyte, whereas UCYN‐A2 is associated with the coastal nanoplanktonic coccolithophoreBraarudosphaera bigelowii, suggesting that different sublineages may be adapted to different environments. Here, we study the diversity ofnifHgenes present at the Santa Cruz Municipal Wharf in the Monterey Bay (MB), California, and report for the first time the presence of multiple UCYN‐A sublineages, unexpectedly dominated by the UCYN‐A2 sublineage. Sequence and quantitative PCR data over an 8‐year time‐series (2011–2018) showed a shift toward increasing UCYN‐A2 abundances after 2013, and a marked seasonality for this sublineage which was present during summer‐fall months, coinciding with the upwelling‐relaxation period in the MB. Increased abundances corresponded to positive temperature anomalies in MB, and we discuss the possibility of a benthic life stage of the associated coccolithophore host to explain the seasonal pattern. The dominance of UCYN‐A2 in coastal waters of the MB underscores the need to further explore the habitat preference of the different sublineages in order to provide additional support for the hypothesis that UCYN‐A1 and UCYN‐A2 sublineages are different ecotypes.

    more » « less