skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The stop-start control of seismicity by fault bends along the Main Himalayan Thrust
Abstract The Himalayan megathrust accommodates most of the relative convergence between the Indian and Eurasian plates, producing cycles of blind and surface-breaking ruptures. Elucidating the mechanics of down-dip segmentation of the seismogenic zone is key to better determine seismic hazards in the region. However, the geometry of the Himalayan megathrust and its impact on seismicity remains controversial. Here, we develop seismic cycle simulations tuned to the seismo-geodetic data of the 2015Mw7.8 Gorkha, Nepal earthquake to better constrain the megathrust geometry and its role on the demarcation of partial ruptures. We show that a ramp in the middle of the seismogenic zone is required to explain the termination of the coseismic rupture and the source mechanism of up-dip aftershocks consistently. Alternative models with a wide décollement can only explain the mainshock. Fault structural complexities likely play an important role in modulating the seismic cycle, in particular, the distribution of rupture sizes. Fault bends are capable of both obstructing rupture propagation as well as behave as a source of seismicity and rupture initiation.  more » « less
Award ID(s):
1848192
PAR ID:
10227419
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Megathrust geometric properties exhibit some of the strongest correlations with maximum earthquake magnitude in global surveys of large subduction zone earthquakes, but the mechanisms through which fault geometry influences subduction earthquake cycle dynamics remain unresolved. Here, we develop 39 models of sequences of earthquakes and aseismic slip (SEAS) on variably‐dipping planar and variably‐curved nonplanar megathrusts using the volumetric, high‐order accurate codetandemto account for fault curvature. We vary the dip, downdip curvature and width of the seismogenic zone to examine how slab geometry mechanically influences megathrust seismic cycles, including the size, variability, and interevent timing of earthquakes. Dip and curvature control characteristic slip styles primarily through their influence on seismogenic zone width: wider seismogenic zones allow shallowly‐dipping megathrusts to host larger earthquakes than steeply‐dipping ones. Under elevated pore pressure and less strongly velocity‐weakening friction, all modeled fault geometries host uniform periodic ruptures. In contrast, shallowly‐dipping and sharply‐curved megathrusts host multi‐period supercycles of slow‐to‐fast, small‐to‐large slip events under higher effective stresses and more strongly velocity‐weakening friction. We discuss how subduction zones' maximum earthquake magnitudes may be primarily controlled by the dip and dimensions of the seismogenic zone, while second‐order effects from structurally‐derived mechanical heterogeneity modulate the recurrence frequency and timing of these events. Our results suggest that enhanced co‐ and interseismic strength and stress variability along the megathrust, such as induced near areas of high or heterogeneous fault curvature, limits how frequently large ruptures occur and may explain curved faults' tendency to host more frequent, smaller earthquakes than flat faults. 
    more » « less
  2. Abstract Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014Mw7.3 Guerrero, Mexico earthquake which was preceded by aMw7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014Mw7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and short‐term interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes. 
    more » « less
  3. Abstract Megathrust earthquakes exhibit a ubiquitous seismic radiation style: low‐frequency (LF) seismic energy is efficiently emitted from the shallowest portion of the fault, whereas high‐frequency (HF) seismic energy is efficiently emitted from the deepest part of the fault. Although this is observed in many case‐specific studies, we show that it is ubiquitous in global megathrust earthquakes between 1995 and 2021. Previous studies have interpreted this as an effect of systematic depth variation in either the plate interface frictional properties (Lay et al., 2012) or the P wavespeeds (Sallarès & Ranero, 2019). This work suggests an alternative hypothesis: the interaction between waves and ruptures due to the Earth's free surface is the leading mechanism that generates this behavior. Two‐dimensional dynamic rupture simulations of subduction zone earthquakes support this hypothesis. Our simulations show that the interaction between the seismic waves reflected at the Earth's free surface and the updip propagating rupture results in LF radiation at the source. In contrast, the downdip propagation of rupture is less affected by the free surface and is thus dominated by HF radiation typical of buried faults. To a second degree, the presence of a realistic Earth structure derived from P‐wave velocity (VP) tomographic images and realistic VP/VSratio estimated in boreholes further enhances the contrast in source radiation. We conclude that the Earth's free surface is necessary to explain the observed megathrust earthquake radiation style, and the realistic structure of subduction zone is necessary to better predict earthquake ground motion and tsunami potential. 
    more » « less
  4. Abstract The Alaska Peninsula section of the Alaska-Aleutian subduction zone shows significant along-strike variations in seismic activity and interseismic plate coupling. This region experienced the 2020 Mw 7.8 Simeonof megathrust, Mw 7.6 Sand Point strike-slip, and 2021 Mw 8.2 Chignik megathrust earthquakes. This study, utilizing deep learning techniques, presents a high-precision earthquake catalog, providing insights into background seismicity, aftershocks, and slab geometry. An abrupt change in the slab dip angle at 30–40 km depths in the Shumagin segment acted as a barrier to the Simeonof and Sand Point earthquake ruptures. The Simeonof event triggered more aftershocks in the overriding plate than the Chignik event, suggesting the overriding plate is more deformed and hydrated in the Shumagin segment. The Sand Point earthquake triggered numerous aftershocks in the overriding plate, delineating a fault in the overriding plate with similar geometry as the intraslab mainshock fault, but activated around seven days after the mainshock. 
    more » « less
  5. Abstract We study the mechanical response of two‐dimensional vertical strike‐slip fault to coseismic damage evolution and interseismic healing of fault damage zones by simulating fully dynamic earthquake cycles. Our models show that fault zone structure evolution during the seismic cycle can have pronounced effects on mechanical behavior of locked and creeping fault segments. Immature fault damage zone models exhibit small and moderate subsurface earthquakes with irregular recurrence intervals and abundance of slow‐slip events during the interseismic period. In contrast, mature fault damage zone models host pulse‐like earthquake ruptures that can propagate to the surface and extend throughout the seismogenic zone, resulting in large stress drop, characteristic rupture extents, and regular recurrence intervals. Our results suggest that interseismic healing and coseismic damage accumulation in fault zones can explain the observed differences of earthquake behaviors between mature and immature fault zones and indicate a link between regional seismic hazard and fault structural maturity. 
    more » « less