Tail risk is an important financial issue today, but directly hedging tail risks with an ad hoc option is still an unresolved problem since it is not easy to specify a suitable and asymmetric pricing kernel. By defining two ad hoc underlying “assets”, this paper designs two novel tail risk options (TROs) for hedging and evaluating short-term tail risks. Under the Fréchet distribution assumption for maximum losses, the closed-form TRO pricing formulas are obtained. Simulation examples demonstrate the accuracy of the pricing formulas. Furthermore, they show that, no matter whether at scale level (symmetric “normal” risk, with greater volatility) or shape level (asymmetric tail risk, with a smaller value in tail index), the greater the risk, the more expensive the TRO calls, and the cheaper the TRO puts. Using calibration, one can obtain the TRO-implied volatility and the TRO-implied tail index. The former is analogous to the Black-Scholes implied volatility, which can measure the overall symmetric market volatility. The latter measures the asymmetry in underlying losses, mirrors market sentiment, and provides financial crisis warnings. Regarding the newly proposed TRO and its implied tail index, economic implications can be offered to investors, portfolio managers, and policy-makers.
more »
« less
MOST-LIKELY-PATH IN ASIAN OPTION PRICING UNDER LOCAL VOLATILITY MODELS
This paper addresses the problem of approximating the price of options on discrete and continuous arithmetic averages of the underlying, i.e. discretely and continuously monitored Asian options, in local volatility models. A “path-integral”-type expression for option prices is obtained using a Brownian bridge representation for the transition density between consecutive sampling times and a Laplace asymptotic formula. In the limit where the sampling time window approaches zero, the option price is found to be approximated by a constrained variational problem on paths in time-price space. We refer to the optimizing path as the most-likely path (MLP). An approximation for the implied normal volatility follows accordingly. The small-time asymptotics and the existence of the MLP are also rigorously recovered using large deviation theory.
more »
« less
- Award ID(s):
- 1653602
- PAR ID:
- 10227489
- Date Published:
- Journal Name:
- International Journal of Theoretical and Applied Finance
- Volume:
- 21
- Issue:
- 05
- ISSN:
- 0219-0249
- Page Range / eLocation ID:
- 1850029
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper, we construct the utility‐based optimal hedging strategy for a European‐type option in the Almgren‐Chriss model with temporary price impact. The main mathematical challenge of this work stems from the degeneracy of the second order terms and the quadratic growth of the first‐order terms in the associated Hamilton‐Jacobi‐Bellman equation, which makes it difficult to establish sufficient regularity of the value function needed to construct the optimal strategy in a feedback form. By combining the analytic and probabilistic tools for describing the value function and the optimal strategy, we establish the feedback representation of the latter. We use this representation to derive an explicit asymptotic expansion of the utility indifference price of the option, which allows us to quantify the price impact in options' market via the price impact coefficient in the underlying market.more » « less
-
Energy storage can generate significant revenue by taking advantage of fluctuations in real-time energy market prices. In this paper, we investigate the real-time price arbitrage potential of aerodynamic energy storage in wind farms. This under-explored source of energy storage can be realized by deferring energy extraction by turbines toward the front of a farm for later extraction by downstream turbines. In large wind farms, this kinetic energy can be stored for minutes to tens of minutes, depending on the inter-turbine travel distance and the incoming wind speed. This storage mechanism requires minimal capital costs for implementation and potentially could provide additional revenue to wind farm operators. We demonstrate that the potential for revenue generation depends on the energy arbitrage (storage) efficiency and the wind travel time between turbines. We then characterize how price volatility and arbitrage efficiency affect real-time energy market revenue potential. Simulation results show that when price volatility is low, which is the historic norm, noticeably increased revenue is only achieved with high arbitrage efficiencies. However, as price volatility increases, which is expected in the future as the composition of the power system evolves, revenues increase by several percent.more » « less
-
We study the market structure for emerging distribution-level energy markets with high renewable energy penetration. Renewable generation is known to be uncertain and has a close-to-zero marginal cost. In this paper, we use solar energy as an example of such zero-marginal-cost resources for our focused study. We first show that, under high penetration of solar generation, the classical real-time market mechanism can either exhibit significant price-volatility (when each firm is not allowed to vary the supply quantity), or induce price-fixing (when each firm is allowed to vary the supply quantity), the latter of which leads to extreme unfairness of surplus division. To overcome these issues, we propose a new rental-market mechanism that trades the usage-right of solar panels instead of real-time solar energy. We show that the rental market produces a stable and unique price (therefore eliminating price-volatility), maintains positive surplus for both consumers and firms (therefore eliminating price-fixing), and achieves the same social welfare as the traditional real-time market. A key insight is that rental markets turn uncertainty of renewable generation from a detrimental factor (that leads to price-volatility in real-time markets) to a beneficial factor (that increases demand elasticity and contributes to the desirable rental-market outcomes).more » « less
-
Andersen, Torben; Chen, Xiaohong (Ed.)This paper introduces a unified approach for modeling high-frequency financial data that can accommodate both the continuous-time jump–diffusion and discrete-time realized GARCH model by embedding the discrete realized GARCH structure in the continuous instantaneous volatility process. The key feature of the proposed model is that the corresponding conditional daily integrated volatility adopts an autoregressive structure, where both integrated volatility and jump variation serve as innovations. We name it as the realized GARCH-Itô model. Given the autoregressive structure in the conditional daily integrated volatility, we propose a quasi-likelihood function for parameter estimation and establish its asymptotic properties. To improve the parameter estimation, we propose a joint quasi-likelihood function that is built on the marriage of daily integrated volatility estimated by high-frequency data and nonparametric volatility estimator obtained from option data. We conduct a simulation study to check the finite sample performance of the proposed methodologies and an empirical study with the S&P500 stock index and option data.more » « less
An official website of the United States government

