Traditional mesa terminations require precise angle design to reduce the electric field at the edge and surface treatment to reduce etch damage. Otherwise, the device usually suffers a premature breakdown. This work proposes the use of easy-to-implement hydrogen plasma treatment to solve the premature breakdown caused by mesa and demonstrates the avalanche capability in GaN-on-GaN p-i-n diodes. The breakdown electric field when the avalanche occurred was ∼2.3 MV/cm at room temperature for a GaN drift layer with a doping concentration of ∼7 × 1015 cm−3, which is consistent with the theoretical value. The temperature coefficient of the avalanche breakdown voltage of the devices was 4.64–4.85 × 10−4 K−1. This work shows a simple and effective approach to achieve avalanche capability in vertical GaN power devices, which can serve as an important reference for the future development of efficient and robust GaN power electronics.
- Award ID(s):
- 1719875
- NSF-PAR ID:
- 10227972
- Date Published:
- Journal Name:
- IEEE transactions on electron devices
- ISSN:
- 1557-9646
- Page Range / eLocation ID:
- 1-5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polarization-induced (Pi) distributed or bulk doping in GaN, with a zero dopant ionization energy, can reduce temperature or frequency dispersions in impurity-doped p–n junctions caused by the deep-acceptor-nature of Mg, thus offering GaN power devices promising prospects. Before comprehensively assessing the benefits of Pi-doping, ideal junction behaviors and high-voltage capabilities should be confirmed. In this work, we demonstrate near-ideal forward and reverse I–V characteristics in Pi-doped GaN power p–n diodes, which incorporates linearly graded, coherently strained AlGaN layers. Hall measurements show a net increase in the hole concentration of 8.9 × 1016 cm−3in the p-layer as a result of the polarization charge. In the Pi-doped n-layer, a record-low electron concentration of 2.5 × 1016 cm−3is realized due to the gradual grading of Al0-0.72GaN over 1 μm. The Pi-doped p–n diodes have an ideality factor as low as 1.1 and a 0.10 V higher turn-on voltage than the impurity-doped p–n diodes due to the increase in the bandgap at the junction edge. A differential specific on-resistance of 0.1 mΩ cm2is extracted from the Pi-doped p–n diodes, similar with the impurity-doped counterpart. The Pi-doped diodes show an avalanche breakdown voltage of ∼1.25 kV, indicating a high reverse blocking capability even without an ideal edge-termination. This work confirms that distributed Pi-doping can be incorporated in high-voltage GaN power devices to increase hole concentrations while maintaining excellent junction properties.
-
This work demonstrates a novel junction termination extension (JTE) with a graded charge profile for vertical GaN p-n diodes. The fabrication of this JTE obviates GaN etch and requires only a single-step implantation. A bi-layer photoresist is used to produce an ultra-small bevel angle (~0.1°) at the sidewall of a dielectric layer. This tapered dielectric layer is then used as the implantation mask to produce a graded charge profile in p-GaN. The fabricated GaN p-n diodes show a breakdown voltage ( BV ) of 1.7 kV (83% of the parallel-plane limit) with positive temperature coefficient, as well as a high avalanche current density over 1100 A/cm 2 at BV in the unclamped inductive switching test. This robust avalanche is ascribed to the migration of the major impact ionization location from the JTE edge to the main junction. This single-implant, efficient, avalanche-capable JTE can potentially become a building block of many vertical GaN devices, and its fabrication technique has wide device and material applicability.more » « less
-
Abstract A unique field termination structure combining a three-step field plate with nitrogen ion implantation to enhance the reverse breakdown performance of Pt/
β -Ga2O3Schottky barrier diodes (SBDs) and NiO/β -Ga2O3heterojunction diodes (HJDs) is reported. The fabricated devices showed a lowR on,spof 6.2 mΩ cm2for SBDs and 6.8 mΩ cm2for HJDs. HJDs showed a 0.8 V turn-on voltage along with an ideality factor of 1.1 leading to a low effective on-resistance of 18 mΩ cm2. The devices also showed low reverse leakage current (<1 mA cm−2) and a breakdown voltage of ∼1.4 kV. These results offer an alternative, simpler route for fabricating high-performance kilovolt-classβ -Ga2O3diodes. -
This abstract presents a study on the avalanche capability of GaN p-i-n diode leading to the achievement of 60A/W, 278V GaN avalanche photodiode. The GaN p-i-n diode fabricated on a free-standing GaN substrate was avalanche capable due to optimal edge termination. Both electrical and optical characterizations were conducted to validate the occurrence of avalanche in these devices. The device showed a positive temperature coefficient of breakdown voltage, which follows the nature of avalanche breakdown. The positive coefficient was measured to be 3.85 ×10^(-4) K^(-1) (0.1V/K) under a measurement temperature ranges from 300 K to 525 K. Moreover, the fabricated device showed excellent performance as an avalanche photo detector with record device metrics: (1) record high photoresponsivity of 60 A/W; (2) high optical gain of 10^5 ; and (3) low cark current. Robust avalanche is a key requirement in various device applications and necessary for their reliable operation.more » « less