skip to main content

Title: High-resolution analogue of time-domain phonon spectroscopy in the transmission electron microscope
Femtosecond photoexcitation of semiconducting materials leads to the generation of coherent acoustic phonons (CAPs), the behaviours of which are linked to intrinsic and engineered electronic, optical and structural properties. While often studied with pump-probe spectroscopic techniques, the influence of nanoscale structure and morphology on CAP dynamics can be challenging to resolve with these all-optical methods. Here, we used ultrafast electron microscopy (UEM) to resolve variations in CAP dynamics caused by differences in the degree of crystallinity in as-prepared and annealed GaAs lamellae. Following in situ femtosecond photoexcitation, we directly imaged the generation and propagation dynamics of hypersonic CAPs in a mostly amorphous and, following an in situ photothermal anneal, a mostly crystalline lamella. Subtle differences in both the initial hypersonic velocities and the asymptotic relaxation behaviours were resolved via construction of space-time contour plots from phonon wavefronts. Comparison to bulk sound velocities in crystalline and amorphous GaAs reveals the influence of the mixed amorphous-crystalline morphology on CAP dispersion behaviours. Further, an increase in the asymptotic velocity following annealing establishes the sensitivity of quantitative UEM imaging to both structural and compositional variations through differences in bonding and elasticity. Implications of extending the methods and results reported here to elucidating correlated electronic, more » optical and structural behaviours in semiconducting materials are discussed. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function'. « less
Award ID(s):
2011401 1420013
Publication Date:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Electronically doped metal oxide nanocrystals exhibit tunable infrared localized surface plasmon resonances (LSPRs). Despite the many benefits of IR resonant LSPRs in solution processable nanocrystals, the ways in which the electronic structure of the host semiconductor material impact metal oxide LSPRs are still being investigated. Semiconductors provide an alternative dielectric environment than metallically bonded solids, such as noble metals, which can impact how these materials undergo electronic relaxation following photoexcitation. Understanding these differences is key to developing applications that take advantage of the unique optical and electronic properties offered by plasmonic metal oxide NCs. Here, we use the two-temperature model in conjunction with femtosecond transient absorption experiments to describe how the internal temperature of two representative metal oxide nanocrystal systems, cubic WO 3−x and bixbyite Sn-doped In 2 O 3 , change following LSPR excitation. We find that the low free carrier concentrations of metal oxide NCs lead to less efficient heat generation as compared to metallic nanocrystals such as Ag. This suggests that metal oxide NCs may be ideal for applications wherein untoward heat generation may disrupt the application's overall performance, such as solar energy conversion and photonic gating.
  2. Understanding of structural and morphological evolution in nanomaterials is critical in tailoring their functionality for applications such as energy conversion and storage. Here, we examine irradiation effects on the morphology and structure of amorphous TiO2 nanotubes in comparison with their crystalline counterpart, anatase TiO2 nanotubes, using high-resolution transmission electron microscopy (TEM), in situ ion irradiation TEM, and molecular dynamics (MD) simulations. Anatase TiO2 nanotubes exhibit morphological and structural stability under irradiation due to their high concentration of grain boundaries and surfaces as defect sinks. On the other hand, amorphous TiO2 nanotubes undergo irradiation-induced crystallization, with some tubes remaining only partially crystallized. The partially crystalline tubes bend due to internal stresses associated with densification during crystallization as suggested by MD calculations. These results present a novel irradiation-based pathway for potentially tuning structure and morphology of energy storage materials.
  3. Sequential vapor doping is a vital process in controlling the electronic transport properties of semiconducting polymers relevant to opto-electronic and thermoelectric applications. Here, we employed an in situ conductivity method to determine the temporal electronic conductivity ( σ ) profile when vapor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) doping poly(3-hexylthiophene) (P3HT) thin films held at a different temperatures. The temporal profile of σ first showed a fast exponential increase, followed by a brief linear increase until reaching a σ max , and followed by a slow decay in σ . The σ profile were correlated to structural changes through a combination UV-vis-NIR spectroscopy, X-ray scattering, and Raman spectroscopy. We find that the timing for σ max , and subsequent drop in σ of P3HT:F4TCNQ thin films corresponds to the evolution of doping in the crystalline (ordered) and amorphous (disordered) domains. Specifically, Raman spectroscopy resonant at 785 nm highlighted that the crystalline domains reached their saturated doping level near σ max and subsequent smaller level of doping occurred in regions in the disordered domains. Overall, this study emphasizes the importance of granular understanding of σ and the corresponding structural changes in the crystalline and amorphous domains.
  4. Organic donor–acceptor (D–A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙ + –A˙ − , between adjacent D–A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D–A co-crystal. We have co-crystallized a peri -xanthenoxanthene ( PXX ) donor with a N , N -bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) ( Ph4PDI ) acceptor to give an orthorhombic PXX – Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for S n ← S 0 excitation of PXX and Ph4PDI . Using polarized, broadband, femtosecond pump–probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t −1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron–hole pairs in the crystal. These energetic chargemore »carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis.« less
  5. Understanding how particle size and morphology influence ion insertion dynamics is critical for a wide range of electrochemical applications including energy storage and electrochromic smart windows. One strategy to reveal such structure–property relationships is to perform ex situ transmission electron microscopy (TEM) of nanoparticles that have been cycled on TEM grid electrodes. One drawback of this approach is that images of some particles are correlated with the electrochemical response of the entire TEM grid electrode. The lack of one-to-one electrochemical-to-structural information complicates interpretation of genuine structure/property relationships. Developing high-throughput ex situ single particle-level analytical techniques that effectively link electrochemical behavior with structural properties could accelerate the discovery of critical structure-property relationships. Here, using Li-ion insertion in WO 3 nanorods as a model system, we demonstrate a correlated optically-detected electrochemistry and TEM technique that measures electrochemical behavior of via many particles simultaneously without having to make electrical contacts to single particles on the TEM grid. This correlated optical-TEM approach can link particle structure with electrochemical behavior at the single particle-level. Our measurements revealed significant electrochemical activity heterogeneity among particles. Single particle activity correlated with distinct local mechanical or electrical properties of the amorphous carbon film of the TEM grid, leading tomore »active and inactive particles. The results are significant for correlated electrochemical/TEM imaging studies that aim to reveal structure-property relationships using single particle-level imaging and ensemble-level electrochemistry.« less