skip to main content

Title: Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use
Automated tracking of physical fitness has sparked a health revolution by allowing individuals to track their own physical activity and health in real time. This concept is beginning to be applied to tracking of cognitive load. It is well known that activity in the brain can be measured through changes in the body’s physiology, but current real-time measures tend to be unimodal and invasive. We therefore propose the concept of a wearable educational fitness (EduFit) tracker. We use machine learning with physiological data to understand how to develop a wearable device that tracks cognitive load accurately in real time. In an initial study, we found that body temperature, skin conductance, and heart rate were able to distinguish between (i) a problem solving activity (high cognitive load), (ii) a leisure activity (moderate cognitive load), and (iii) daydreaming (low cognitive load) with high accuracy in the test dataset. In a second study, we found that these physiological features can be used to predict accurately user-reported mental focus in the test dataset, even when relatively small numbers of training data were used. We explain how these findings inform the development and implementation of a wearable device for temporal tracking and logging a user’s more » learning activities and cognitive load. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performancemore »measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance.« less
  2. Wearable technologies for measuring digital and chemical physiology are pervading the consumer market and hold potential to reliably classify states of relevance to human performance including stress, sleep deprivation, and physical exertion. The ability to efficiently and accurately classify physiological states based on wearable devices is improving. However, the inherent variability of human behavior within and across individuals makes it challenging to predict how identified states influence human performance outcomes of relevance to military operations and other high-stakes domains. We describe a computational modeling approach to address this challenge, seeking to translate user states obtained from a variety of sources including wearable devices into relevant and actionable insights across the cognitive and physical domains. Three status predictors were considered: stress level, sleep status, and extent of physical exertion; these independent variables were used to predict three human performance outcomes: reaction time, executive function, and perceptuo-motor control. The approach provides a complete, conditional probabilistic model of the performance variables given the status predictors. Construction of the model leverages diverse raw data sources to estimate marginal probability density functions for each of six independent and dependent variables of interest using parametric modeling and maximum likelihood estimation. The joint distributions among variables weremore »optimized using an adaptive LASSO approach based on the strength and directionality of conditional relationships (effect sizes) derived from meta-analyses of extant research. The model optimization process converged on solutions that maintain the integrity of the original marginal distributions and the directionality and robustness of conditional relationships. The modeling framework described provides a flexible and extensible solution for human performance prediction, affording efficient expansion with additional independent and dependent variables of interest, ingestion of new raw data, and extension to two- and three-way interactions among independent variables. Continuing work includes model expansion to multiple independent and dependent variables, real-time model stimulation by wearable devices, individualized and small-group prediction, and laboratory and field validation.« less
  3. Driven by the increasing complexity of built environments, firefighters are often exposed to extensive wayfinding information which could cause high cognitive load and ineffective or even dangerous decision making. To reduce injuries and fatal incidents in firefighters’ line of duty, this study aims at measuring the cognitive load and identifying the source of such cognitive overload in wayfinding information review. We developed a Sternberg Test to induce cognitive load on participants pertaining to working memory development, where participants were required to memorize colors, letters, numbers, directions, icons, words, and letter combinations that are relevant to wayfinding tasks. We used an Electroencephalogram (EEG) device to monitor neural activities especially in frontal, parietal, and occipital areas of brain. The fast Fourier transformation (FFT) was applied to separate the sub-band energy. The speed of response in Sternberg Test and the EEG signals were compared to show the coherence between the results of the two methods in representing the cognitive load in the review test. Results indicate that the cognitive load arises from diverse information can be measured to help customize wayfinding information for controlled cognitive load of firefighters in wayfinding tasks.
  4. A large portion of the cost of any software lies in the time spent by developers in understanding a program’s source code before any changes can be undertaken. Measuring program comprehension is not a trivial task. In fact, different studies use self-reported and various psycho-physiological measures as proxies. In this research, we propose a methodology using functional Near Infrared Spectroscopy (fNIRS) and eye tracking devices as an objective measure of program comprehension that allows researchers to conduct studies in environments close to real world settings, at identifier level of granularity. We validate our methodology and apply it to study the impact of lexical, structural, and readability issues on developers’ cognitive load during bug localization tasks. Our study involves 25 undergraduate and graduate students and 21 metrics. Results show that the existence of lexical inconsistencies in the source code significantly increases the cognitive load experienced by participants not only on identifiers involved in the inconsistencies but also throughout the entire code snippet. We did not find statistical evidence that structural inconsistencies increase the average cognitive load that participants experience, however, both types of inconsistencies result in lower performance in terms of time and success rate. Finally, we observe that self-reported taskmore »difficulty, cognitive load, and fixation duration do not correlate and appear to be measuring different aspects of task difficulty.« less
  5. Background The physical and emotional well-being of women is critical for healthy pregnancy and birth outcomes. The Two Happy Hearts intervention is a personalized mind-body program coached by community health workers that includes monitoring and reflecting on personal health, as well as practicing stress management strategies such as mindful breathing and movement. Objective The aims of this study are to (1) test the daily use of a wearable device to objectively measure physical and emotional well-being along with subjective assessments during pregnancy, and (2) explore the user’s engagement with the Two Happy Hearts intervention prototype, as well as understand their experiences with various intervention components. Methods A case study with a mixed design was used. We recruited a 29-year-old woman at 33 weeks of gestation with a singleton pregnancy. She had no medical complications or physical restrictions, and she was enrolled in the Medi-Cal public health insurance plan. The participant engaged in the Two Happy Hearts intervention prototype from her third trimester until delivery. The Oura smart ring was used to continuously monitor objective physical and emotional states, such as resting heart rate, resting heart rate variability, sleep, and physical activity. In addition, the participant self-reported her physical and emotionalmore »health using the Two Happy Hearts mobile app–based 24-hour recall surveys (sleep quality and level of physical activity) and ecological momentary assessment (positive and negative emotions), as well as the Perceived Stress Scale, Center for Epidemiologic Studies Depression Scale, and State-Trait Anxiety Inventory. Engagement with the Two Happy Hearts intervention was recorded via both the smart ring and phone app, and user experiences were collected via Research Electronic Data Capture satisfaction surveys. Objective data from the Oura ring and subjective data on physical and emotional health were described. Regression plots and Pearson correlations between the objective and subjective data were presented, and content analysis was performed for the qualitative data. Results Decreased resting heart rate was significantly correlated with increased heart rate variability (r=–0.92, P<.001). We found significant associations between self-reported responses and Oura ring measures: (1) positive emotions and heart rate variability (r=0.54, P<.001), (2) sleep quality and sleep score (r=0.52, P<.001), and (3) physical activity and step count (r=0.77, P<.001). In addition, deep sleep appeared to increase as light and rapid eye movement sleep decreased. The psychological measures of stress, depression, and anxiety appeared to decrease from baseline to post intervention. Furthermore, the participant had a high completion rate of the components of the Two Happy Hearts intervention prototype and shared several positive experiences, such as an increased self-efficacy and a normal delivery. Conclusions The Two Happy Hearts intervention prototype shows promise for potential use by underserved pregnant women.« less