skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Machine Learning to Train a Wearable Device for Measuring Students’ Cognitive Load during Problem-Solving Activities Based on Electrodermal Activity, Body Temperature, and Heart Rate: Development of a Cognitive Load Tracker for Both Personal and Classroom Use
Automated tracking of physical fitness has sparked a health revolution by allowing individuals to track their own physical activity and health in real time. This concept is beginning to be applied to tracking of cognitive load. It is well known that activity in the brain can be measured through changes in the body’s physiology, but current real-time measures tend to be unimodal and invasive. We therefore propose the concept of a wearable educational fitness (EduFit) tracker. We use machine learning with physiological data to understand how to develop a wearable device that tracks cognitive load accurately in real time. In an initial study, we found that body temperature, skin conductance, and heart rate were able to distinguish between (i) a problem solving activity (high cognitive load), (ii) a leisure activity (moderate cognitive load), and (iii) daydreaming (low cognitive load) with high accuracy in the test dataset. In a second study, we found that these physiological features can be used to predict accurately user-reported mental focus in the test dataset, even when relatively small numbers of training data were used. We explain how these findings inform the development and implementation of a wearable device for temporal tracking and logging a user’s learning activities and cognitive load.  more » « less
Award ID(s):
1742339
PAR ID:
10228275
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
20
Issue:
17
ISSN:
1424-8220
Page Range / eLocation ID:
4833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance. 
    more » « less
  2. A large portion of the cost of any software lies in the time spent by developers in understanding a program’s source code before any changes can be undertaken. Measuring program comprehension is not a trivial task. In fact, different studies use self-reported and various psycho-physiological measures as proxies. In this research, we propose a methodology using functional Near Infrared Spectroscopy (fNIRS) and eye tracking devices as an objective measure of program comprehension that allows researchers to conduct studies in environments close to real world settings, at identifier level of granularity. We validate our methodology and apply it to study the impact of lexical, structural, and readability issues on developers’ cognitive load during bug localization tasks. Our study involves 25 undergraduate and graduate students and 21 metrics. Results show that the existence of lexical inconsistencies in the source code significantly increases the cognitive load experienced by participants not only on identifiers involved in the inconsistencies but also throughout the entire code snippet. We did not find statistical evidence that structural inconsistencies increase the average cognitive load that participants experience, however, both types of inconsistencies result in lower performance in terms of time and success rate. Finally, we observe that self-reported task difficulty, cognitive load, and fixation duration do not correlate and appear to be measuring different aspects of task difficulty. 
    more » « less
  3. Driven by the increasing complexity of built environments, firefighters are often exposed to extensive wayfinding information which could cause high cognitive load and ineffective or even dangerous decision making. To reduce injuries and fatal incidents in firefighters’ line of duty, this study aims at measuring the cognitive load and identifying the source of such cognitive overload in wayfinding information review. We developed a Sternberg Test to induce cognitive load on participants pertaining to working memory development, where participants were required to memorize colors, letters, numbers, directions, icons, words, and letter combinations that are relevant to wayfinding tasks. We used an Electroencephalogram (EEG) device to monitor neural activities especially in frontal, parietal, and occipital areas of brain. The fast Fourier transformation (FFT) was applied to separate the sub-band energy. The speed of response in Sternberg Test and the EEG signals were compared to show the coherence between the results of the two methods in representing the cognitive load in the review test. Results indicate that the cognitive load arises from diverse information can be measured to help customize wayfinding information for controlled cognitive load of firefighters in wayfinding tasks. 
    more » « less
  4. Abstract Physical activity can benefit both physical and mental well-being. Different forms of exercise (e.g., aerobic versus anaerobic; running versus walking, swimming, or yoga; high-intensity interval training versus endurance workouts; etc.) impact physical fitness in different ways. For example, running may substantially impact leg and heart strength but only moderately impact arm strength. We hypothesized that the mental benefits of physical activity might be similarly differentiated. We focused specifically on how different intensities of physical activity might relate to different aspects of memory and mental health. To test our hypothesis, we collected (in aggregate) roughly a century’s worth of fitness data. We then asked participants to fill out surveys asking them to self-report on different aspects of their mental health. We also asked participants to engage in a battery of memory tasks that tested their short and long term episodic, semantic, and spatial memory performance. We found that participants with similar physical activity habits and fitness profiles tended to also exhibit similar mental health and task performance profiles. These effects were task-specific in that different physical activity patterns or fitness characteristics varied with different aspects of memory, on different tasks. Taken together, these findings provide foundational work for designing physical activity interventions that target specific components of cognitive performance and mental health by leveraging low-cost fitness tracking devices. 
    more » « less
  5. Exoskeletons, also known as wearable robots, are being studied as a potential solution to reduce the risk of work-related musculoskeletal disorders (WMSDs) in construction. The exoskeletons can help enhance workers’ postures and provide lift support, reducing the muscular demands on workers while executing construction tasks. Despite the potential of exoskeletons inreducing the risk of WMSDs, there is a lack of understanding about the potential effects ofexoskeletons on workers’ psychological states. This lack of knowledge raises concerns thatexoskeletons may lead to psychological risks, such as cognitive overload, among workers. Tobridge this gap, this study aims to assess the impact of back-support exoskeletons (BSE) onworkers’ cognitive load during material lifting tasks. To accomplish this, a physiologically basedcognitive load assessment framework was developed. This framework used wearable biosensorsto capture the physiological signals of workers and applied Autoencoder and Ensemble Learningtechniques to train a machine learning classifier based on the signals to estimate cognitive loadlevels of workers while wearing the exoskeleton. Results showed that using BSE increasedworkers’ cognitive load by 33% compared to not using it during material handling tasks. Thefindings can aid in the design and implementation of exoskeletons in the construction industry. 
    more » « less