skip to main content


Title: Nest predation and adult mortality relationships with post-natal metabolic rates and growth among songbird species
ABSTRACT Metabolism is thought to mediate the connection between environmental selection pressures and a broad array of life history tradeoffs, but tests are needed. High juvenile predation correlates with fast growth, which may be achieved via fast juvenile metabolism. Fast offspring metabolism and growth can create physiological costs later in life that should be minimized in species with low adult mortality. Yet, relationships between juvenile metabolism and mortality at offspring versus adult stages are unexplored. We found that post-natal metabolism was positively correlated with adult mortality but not nest predation rates among 43 songbird species on three continents. Nest predation, but not adult mortality, explained additional variation in growth rates beyond metabolism. Our results suggest that metabolism may not be the mechanism underlying the relationships between growth and mortality at different life stages.  more » « less
Award ID(s):
1656120
NSF-PAR ID:
10228303
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
223
Issue:
16
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Offspring mortality varies dramatically among species with critical demographic and evolutionary ramifications, yet the causes of this variation remain unclear. Nests are widely used for breeding across taxa and thought to influence offspring mortality risk. Traditionally, more complex, enclosed nest structures are thought to reduce offspring predation by reducing the visibility of nest contents and muffling offspring sounds compared to open nests. Direct tests of the functional bases for nest structure influence on predation risk are lacking.

    We used experiments and 10 years of observational data to examine how nest structure influences nest predation risk in a diverse community of tropical songbirds. First, we examined how nest size was related to nest structure and nest predation rates across species. Second, we assessed how nest structure influences the detectability of nestling begging calls both in field and in laboratory settings. Finally, we examined how the acoustic properties of different nest structures influence nest predation risk. Specifically, we experimentally broadcast begging calls from open and enclosed nests to determine how auditory cues and nest structure interact to affect predation on plasticine and quail eggs. We also tested whether nest structure was associated with differences in nest predation rates between the incubation (no begging cues) and nestling (begging cues) stages.

    We found that enclosed nests are larger than open nests after accounting for adult size, and larger nests had increased predation rates. Moreover, enclosed nests did not consistently alter nestling begging calls in ways that reduce the likelihood of predation compared to open nests. Indeed, begging cues increased predation rates for enclosed but not open‐cup nests in our playback experiment, and nest predation rates showed greater increases after hatching in enclosed than open‐cup nests.

    Ultimately, enclosed nests do not necessarily provide greater predation benefits than open nests in contrast to long‐standing theory.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less
  2. Abstract

    The Skutch (1949) Hypothesis that nest predation risk constrains parental nest activity has important implications for the evolution of parental care strategies, but the required conditions for the hypothesis to operate have been questioned. We found the necessary conditions existed in a montane tropical bird community where 95.4% of predation events (n = 456) occurred during daylight hours and almost all predators (n = 224) were visually oriented. Moreover, incubation strategies for 21 passerine species were explained by nest predation rates as proposed by the Skutch Hypothesis. Hourly rates of visits to the nest were lower among species with higher nest predation rates, and achieved in part by longer on- and off-bouts. Incubation attentiveness (percent of time incubating) does not necessarily affect parental nest activity and was not related to nest predation rates. Nest predation rates were greater in enclosed- than open-nesting species, counter to long-standing views. Moreover, nest predation was usually higher in the nestling period when parents were more actively visiting nests than during incubation for enclosed- but not open-nesting species. This increase in nest predation in the nestling period for enclosed-nesting species might indicate proximate predation responses to parental nest activity that underlie the evolutionary patterns. Adult mortality also can exert selection on evolved strategies. Following life history theory, annual adult mortality probability explained residual variation in incubation behaviors, while accounting for nest predation, with longer-lived species exhibiting lower nest activity and attentiveness. Ultimately, the conditions for the Skutch Hypothesis were clear and evolved behaviors suggest an important influence of natural selection by nest predation in this montane tropical bird community. At the same time, different patterns of nest predation between open- and enclosed-nesting species emphasize a need for further research into how parental nest activity interacts with nest type to affect predator detection of nests.

     
    more » « less
  3. Abstract Aim

    Understanding variation in offspring energy expenditure is important because energy is critical for growth and development. Weather may exert proximate effects on offspring energy expenditure, but in altricial species these might be masked by parental care and huddling with siblings. Such effects are particularly important to understand given changing global weather patterns, yet studies of wild offspring in the presence of parental care are lacking. Offspring energy expenditure may also vary among species due to evolved responses to environmental selection pressures, requiring studies at both proximate and ultimate levels.

    Location

    USA, South Africa, Malaysia.

    Time period

    2016–2019.

    Major taxa studied

    Songbirds.

    Methods

    We used the doubly‐labelled water technique to estimate nestling daily energy expenditure of 54 songbird species across three continents. We used Bayesian phylogenetic mixed models to test proximate and evolutionary causes of variation in offspring energy expenditure while accounting for phylogeny and phylogenetic uncertainty.

    Results

    Offspring energy expenditure increased with more rainfall and colder air temperatures, but decreased among offspring in broods with more siblings. Across species, nestling and adult mortality, but not growth rate, were positively associated with offspring energy use.

    Main conclusions

    Weather had clear proximate effects on offspring energy expenditure and parents were either unable or unwilling to fully offset these effects. However, the decrease in offspring energy use when huddling with more siblings demonstrated a modulating effect of life history traits. For example, high nest predation rates favour reduced parental care and can force offspring to spend more energy coping with environmental conditions. Furthermore, reduced energy expenditure is thought to facilitate increased longevity, which is increasingly realized with lower extrinsic mortality rates, providing an explanation for the positive association between adult mortality and offspring energy expenditure. Ultimately, both proximate and evolutionary influences need to be considered to better understand causes of offspring energetics.

     
    more » « less
  4. Abstract

    We studied the impacts of climate variability on low‐elevation forests in the U.S. northern Rocky Mountains by quantifying how post‐fire tree regeneration and radial growth varied with growing‐season climate. We reconstructed post‐fire regeneration and radial growth rates ofPinus ponderosaandPseudotsuga menziesiiat 33 sites that burned between 1992 and 2007, by aging seedlings at the root–shoot boundary. We also measured radial growth in adult trees from 12 additional sites that burned between 1900 and 1990. To quantify the relationship between climate and regeneration, we characterized seasonal climate before, during, and after recruitment pulses using superposed epoch analysis. To quantify growth sensitivity to climate, we performed moving regression analysis for each species and for juvenile and adult life stages. Climatic conditions favoring regeneration and tree growth differed between species. Water deficit and temperature were significantly lower than average during recruitment pulses of ponderosa pine, suggesting that germination‐year climate limits regeneration. Growing degree days were significantly higher than average during years with Douglas‐fir recruitment pulses, but water deficit was significantly lower one year following pulses, suggesting moisture sensitivity in two‐year‐old seedlings. Growth was also sensitive to water deficit, but effects varied between life stages, species, and through time, with juvenile ponderosa pine growth more sensitive to climate than adult growth and juvenile Douglas‐fir growth. Increasing water deficit corresponded with reduced adult growth of both species. Increases in maximum temperature and water deficit corresponded with increases in juvenile growth of both species in the early 20th century but strong reductions in growth for juvenile ponderosa pine in recent decades. Changing sensitivity of growth to climate suggests that increased temperature and water deficit may be pushing these species toward the edge of their climatic tolerances. Our study demonstrates increased vulnerability of dry mixed‐conifer forests to post‐fire regeneration failures and decreased growth as temperatures and drought increase. Shifts toward unfavorable conditions for regeneration and juvenile growth may alter the composition and resilience of low‐elevation forests to future climate and fire activity.

     
    more » « less
  5. Abstract

    Developmental responses can help young animals reduce predation risk but can also yield costs to performance and survival in subsequent life stages with major implications for lifetime fitness. Compensatory mechanisms may evolve to offset such costs, but evidence from natural systems is largely lacking.

    In songbirds, increased nest predation risk should favour reduced provisioning, but also young that fledge (leave their nest) at an earlier age. Both responses can result in fledglings with shorter wings, reduced mobility and decreased survival. Young may compensate for shorter wings developmentally by reallocating resources towards feather development or behaviourally by adjusting flight kinematics or habitat use. However, underfed young may lack the capacity to express these phenotypes due to insufficient resources or an inability to adjust allocation of resources.

    Using predation risk experiments and 29 years of observational field data, we test whether increased nest predation risk reduces flight performance and survival during the fledgling stage and explore potential mechanisms that might underlie these effects. We show that young from high‐risk nests did not leave the nest earlier on average, but wing growth was slower likely due to observed reductions in parental feeding rates. Wings were shorter in high‐risk nests when fledglings left the nest early. Yet, fledglings from high‐risk nests showed improved flight performance for a given wing length such that flight performance at fledging did not differ between young from high‐risk and low‐risk nests. Young from high‐risk nests may have offset the costs of shorter wings on flight performance by accelerating the emergence of flight feathers from their sheaths to reduce wing porosity, though evidence for this mechanism was mixed. Fledglings from high‐risk nests also selected habitat with denser woody vegetation compared with young from low‐risk nests.

    Together, these developmental and behavioural responses seem to mitigate the expected effects of increased nest predation risk on fledgling survival. Ultimately, our results show that offspring predation risk can affect parental provisioning and offspring morphology without major implications for performance and survival in subsequent life stages.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less