skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating well potential parameters on neural spike enhancement in a stochastic-resonance pre-emphasis algorithm
Objective. Background noise experienced during extracellular neural recording limits the number of spikes that can be reliably detected, which ultimately limits the performance of next-generation neuroscientific work. In this study, we aim to utilize stochastic resonance (SR), a technique that can help identify weak signals in noisy environments, to enhance spike detectability. Approach. Previously, an SR-based pre-emphasis algorithm was proposed, where a particle inside a 1D potential well is exerted by a force defined by the extracellular recording, and the output is obtained as the displacement of the particle. In this study, we investigate how the well shape and damping status impact the output Signal-to-Noise Ratio (SNR). We compare the overdamped and underdamped solutions of shallow- and steep-wall monostable wells and bistable wells in terms of SNR improvement using two synthetic datasets. Then, we assess the spike detection performance when thresholding is applied on the output of the well shape-damping status configuration giving the best SNR enhancement. Main results. The SNR depends on the well-shape and damping-status type as well as the input noise level. The underdamped solution of the shallow-wall monostable well can yield to more than four orders of magnitude greater SNR improvement compared to other configurations for low noise intensities. Using this configuration also results in better spike detection sensitivity and positive predictivity than the state-of-the-art spike detection algorithms for a public synthetic dataset. For larger noise intensities, the overdamped solution of the steep-wall monostable well provides better spike enhancement than the others. Significance. The dependence of SNR improvement on the input signal noise level can be used to design a detector with multiple outputs, each more sensitive to a certain distance from the electrode. Such a detector can potentially enhance the performance of a successive spike sorting stage.  more » « less
Award ID(s):
1916160
PAR ID:
10228364
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Neural Engineering
ISSN:
1741-2560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research explores the inherent vulnerability of nonlinear vehicle platoons characterized by the oscillatory behavior triggered by external perturbations. The perturbation exerted on the vehicle platoon is regarded as an external force on an object. Following the mechanical vibration analysis in mechanics, this research proposes a vibration-theoretic approach that advances our understanding of platoon vulnerability from two aspects. First, the proposed approach introduces damping intensity to characterize vehicular platoon vulnerability, which divides platoon oscillations into two types, i.e., underdamped and overdamped. The damping intensity measures the platoon’s recovery strength in responding to perturbations. Second, the proposed approach can obtain the resonance frequency of a nonlinear vehicle platoon, where resonance amplifies platoon oscillation magnitude when the external perturbation frequency equals the platoon’s damping oscillation frequency. The main contribution of this research lies in the analytical derivation of the closed-form formulas of damping intensity and resonance frequency. In particular, the proposed approach formulates platoon dynamics under perturbation as a second-order non-homogeneous ordinary differential equation, enabling rigorous derivations and analyses for platoons with complicated nonlinear car-following behaviors. Through simulations built on real-world data, this paper demonstrates that an overdamped vehicle platoon is more robust against perturbations, and an underdamped platoon can be destabilized easily by exerting a perturbation at the platoon’s resonance frequency. The theoretical derivations and simulation results shed light on the design of reliable platooning control, either for human-driven or automated vehicles, to suppress the adverse effects of oscillations. 
    more » « less
  2. We propose a three-track detection system for two dimensional magnetic recording (TDMR) in which a local area influence probabilistic (LAIP) detector works with a trellis-based Bahl-Cocke-Jelinek-Raviv (BCJR) detector to remove intersymbol interference (ISI) and intertrack interference (ITI) among coded data bits as well as media noise due to magnetic grain-bit interactions. Two minimum mean-squared error (MMSE) linear equalizers with different response targets are employed before the LAIP and BCJR detectors. The LAIP detector considers local grain-bit interactions and passes coded bit log-likelihood ratios (LLRs) to the channel decoder, whose output LLRs serve as a priori information to the BCJR detector, which is followed by a second channel decoding pass. Simulation results under 1-shot decoding on a grain-flipping-probability (GFP) media model show that the proposed LAIP/BCJR detection system achieves density gains of 10.16% for center-track detection and 3.13% for three-track detection compared to a standard BCJR/1D-PDNP. The proposed system's BCJR detector bit error rates (BERs) are lower than those of a recently proposed two-track BCJR/2D-PDNP system by factors of (0.55, 0.08) for tracks 1 and 2 respectively. 
    more » « less
  3. Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade. 
    more » « less
  4. Smartphone MEMS (Micro Electrical Mechanical System) accelerometers have relatively low sensitivity and high output noise density. Therefore, it cannot be directly used to track feeble vibrations such as structural vibrations. This article proposes an effective increase in the sensitivity of the smartphone accelerometer utilizing the stochastic resonance (SR) phenomenon. SR is an approach where, counter-intuitively, feeble signals are amplified rather than overwhelmed by the addition of noise. This study introduces the 2D-frequency independent underdamped pinning stochastic resonance (2D-FI-UPSR) technique, which is a customized SR filter that enables identifying the frequencies of weak signals. To validate the feasibility of the proposed SR filter, an iPhone device is used to collect bridge acceleration data during normal traffic operation and the proposed 2D-FI-UPSR filter is used to process these data. The first four fundamental bridge frequencies are successfully identified from the iPhone data. In parallel to the iPhone, a highly sensitive wireless sensing network consists of 15 accelerometers (Silicon Designs accelerometers SDI-2012) is installed to validate the accuracy of the extracted frequencies. The measurement fidelity of the iPhone device is shown to be consistent with the wireless sensing network data with approximately 1% error in the first three bridge frequencies and 3% error in the fourth frequency. 
    more » « less
  5. Multitrack detection architectures provide throughput and areal density gains over the current industry’s standard of single-track detection architectures. One major challenge of multitrack architectures is the complexity of implementing conventional pattern-dependent media noise prediction (PDNP) strategy within the multitrack symbol detector. In this paper we propose a neural network media noise predictor with manageable complexity that iterates with our rotating target (ROTAR) symbol detector in the turbo equalization fashion to predict and cancel the media noise for multitrack detection of asynchronous tracks. We evaluate the proposed detection strategy on a realistic two-dimensional magnetic-recording channel, and find that the proposed solution can effectively mitigate the media noise and therefore can replace the prohibitively complex PDNP solution for multitrack detection. 
    more » « less