skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representative Diatom and Coccolithophore Species Exhibit Divergent Responses throughout Simulated Upwelling Cycles
ABSTRACT Wind-driven upwelling followed by relaxation results in cycles of cold nutrient-rich water fueling intense phytoplankton blooms followed by nutrient depletion, bloom decline, and sinking of cells. Surviving cells at depth can then be vertically transported back to the surface with upwelled waters to seed another bloom. As a result of these cycles, phytoplankton communities in upwelling regions are transported through a wide range of light and nutrient conditions. Diatoms appear to be well suited for these cycles, but their responses to them remain understudied. To investigate the bases for diatoms’ ecological success in upwelling environments, we employed laboratory simulations of a complete upwelling cycle with a common diatom, Chaetoceros decipiens , and coccolithophore, Emiliania huxleyi . We show that while both organisms exhibited physiological and transcriptomic plasticity, the diatom displayed a distinct response enabling it to rapidly shift-up growth rates and nitrate assimilation when returned to light and available nutrients following dark nutrient-deplete conditions. As observed in natural diatom communities, C. decipiens highly expresses before upwelling, or frontloads, key transcriptional and nitrate assimilation genes, coordinating its rapid response to upwelling conditions. Low-iron simulations showed that C. decipiens is capable of maintaining this response when iron is limiting to growth, whereas E. huxleyi is not. Differential expression between iron treatments further revealed specific genes used by each organism under low iron availability. Overall, these results highlight the responses of two dominant phytoplankton groups to upwelling cycles, providing insight into the mechanisms fueling diatom blooms during upwelling events. IMPORTANCE Coastal upwelling regions are among the most biologically productive ecosystems. During upwelling events, nutrient-rich water is delivered from depth resulting in intense phytoplankton blooms typically dominated by diatoms. Along with nutrients, phytoplankton may also be transported from depth to seed these blooms then return to depth as upwelling subsides creating a cycle with varied conditions. To investigate diatoms’ success in upwelling regions, we compare the responses of a common diatom and coccolithophore throughout simulated upwelling cycles under iron-replete and iron-limiting conditions. The diatom exhibited a distinct rapid response to upwelling irrespective of iron status, whereas the coccolithophore’s response was either delayed or suppressed depending on iron availability. Concurrently, the diatom highly expresses, or frontloads, nitrate assimilation genes prior to upwelling, potentially enabling this rapid response. These results provide insight into the molecular mechanisms underlying diatom blooms and ecological success in upwelling regions.  more » « less
Award ID(s):
1751805
PAR ID:
10228545
Author(s) / Creator(s):
; ; ;
Editor(s):
Huber, Julie A.
Date Published:
Journal Name:
mSystems
Volume:
6
Issue:
2
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coastal upwelling currents such as the California Current System (CCS) comprise some of the most productive biological systems on the planet. Diatoms dominate these upwelling events in part due to their rapid response to nutrient entrainment. In this region, they may also be limited by the micronutrient iron (Fe), an important trace element primarily involved in photosynthesis and nitrogen assimilation. The mechanisms behind how diatoms physiologically acclimate to the different stages of the upwelling conveyor belt cycle remain largely uncharacterized. Here, we explore their physiological and metatranscriptomic response to the upwelling cycle with respect to the Fe limitation mosaic that exists in the CCS. Subsurface, natural plankton assemblages that would potentially seed surface blooms were examined over wide and narrow shelf regions. The initial biomass and physiological state of the phytoplankton community had a large impact on the overall response to simulated upwelling. Following on‐deck incubations under varying Fe physiological states, our results suggest that diatoms quickly dominated the blooms by “frontloading” nitrogen assimilation genes prior to upwelling. However, diatoms subjected to induced Fe limitation exhibited reductions in carbon and nitrogen uptake and decreasing biomass accumulation. Simultaneously, they exhibited a distinct gene expression response which included increased expression of Fe‐starvation induced proteins and decreased expression of nitrogen assimilation and photosynthesis genes. These findings may have significant implications for upwelling events in future oceans, where changes in ocean conditions are projected to amplify the gradient of Fe limitation in coastal upwelling regions. 
    more » « less
  2. Bernstein, Hans C (Ed.)
    ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms. 
    more » « less
  3. Diatom-dominated blooms in coastal upwelling systems contribute disproportionately to global primary production. The fate of carbon captured during a diatom bloom is often influenced by species-specific ecological differences. However, successional patterns that take place during a diatom bloom are often oversimplified, and the diversity of diatom adaptations to different stages of a bloom remains poorly characterized. To improve our understanding of diatom specificity to certain conditions within a bloom, we employed microscopy, 18S rRNA amplicons, and biogeochemical analysis within a simulated upwelling mesocosm experiment. We successfully simulated a diatom bloom and found that diatoms bloomed during early and late phases of the bloom. Surprisingly, the relative abundance of congeneric diatoms with the Thalassiosira, Chaetoceros, and Pseudonitzschia displayed opposing patterns that were consistent among experimental mesocosms. The late stage of the bloom was especially interesting because some diatoms continued to bloom among mixotrophic dinoflagellate genera Akashiwo, Heterocapsa, and Prorocentrum. Additionally, Syndiniales putative parasites were correlated with several diatoms, especially in the initial phase of the bloom. The novel observations of consistent rapid successional changes within our mesocosms reflect the ability of diatom and dinoflagellate genera to occupy bloom conditions that fall outside traditional expectations. Syndiniales parasite co-occurrence with blooming diatoms may be important to successional trends of coastal diatom populations, and this parasitic interaction deserves further study in coastal upwelling systems. This study indicates there are underlying diatom traits and biotic interactions that should be considered when estimating their contribution to productivity and carbon cycling within upwelling systems. 
    more » « less
  4. This dataset includes depth profiles in the euphotic zone of nutrient (nitrate, silicate, phosphate) concentrations and profiles of silicic acid uptake rates from seawater samples collected on EXPORTS cruise DY131 during May 2021. This research focuses on the vertical export of the carbon associated with a major group of phytoplankton, the diatoms in the North Atlantic near the Porcupine Abyssal Plain. The major objective is to understand how diatom community composition and the prevailing nutrient conditions create taxonomic differences in metabolic state that combine to direct diatom taxa to different carbon export pathways. The focus is on diatoms, given their large contribution to global marine primary productivity and carbon export which translates into a significant contribution to the biogeochemical cycling of carbon (C), nitrogen (N), phosphorus (P), iron (Fe) and silicon (Si). It is hypothesized that the type and degree of diatom physiological stress are vital aspects of ecosystem state that drive export. To test this hypothesis, combined investigator expertise in phytoplankton physiology, genomics, and trace element chemistry is used to assess the rates of nutrient use and the genetic composition and response of diatom communities, with measurements of silicon and iron stress to evaluate stress as a predictor of the path of diatom carbon export. The EXPORTS field campaign in the North Atlantic sampled a retentive eddy over nearly a month. At the beginning of the cruise, nitrate was abundant while silicic acid was nearly undetectable. Such low dissolved Si concentrations significantly limit diatom silicification resulting in diatoms with reduced mineral ballast and low Si:C and Si:N ratios that would reduce sinking rates and competition for Si can alter diatom taxonomic composition. Both factors can the path cells follow through the food web ultimately altering diatom carbon export. Within each ecosystem state examined in the EXPORTS program, nutrient biogeochemistry, diatom and phytoplankton community structure, and global diatom gene expression patterns (metatranscriptomics) are characterized in the ocean. Nutrient amendment experiments with tracer addition (14C, 32Si) are used to quantify the level of Si, N, and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in situ communities. 
    more » « less
  5. This dataset includes trace metal (iron, manganese, cobalt, nickel, copper, zinc, cadmium, lead) and macronutrient (nitrate&nitrite, nitrite, phosphate, silicic acid) concentration data from incubation experiments conducted on board the RRS Discovery during the EXPORTS North Atlantic campaign at the Porcupine Abyssal Plain-Sustained Observatory (PAP-SO) site (DY131). In these experiments, additions of macronutrients (N, P, Si) and Fe were used to assess the level of Si, N, and Fe stress being experienced by the phytoplankton and to contextualize taxa-specific metatranscriptome responses for resolving gene expression profiles in the in-situ communities. This research project focuses on the vertical export of the carbon associated with a major group of phytoplankton, the diatoms in the North Atlantic near the Porcupine Abyssal Plain. The major objective is to understand how diatom community composition and the prevailing nutrient conditions create taxonomic differences in metabolic state that combine to direct diatom taxa to different carbon export pathways. The focus is on diatoms, given their large contribution to global marine primary productivity and carbon export which translates into a significant contribution to the biogeochemical cycling of carbon (C), nitrogen (N), phosphorus (P), iron (Fe) and silicon (Si). It is hypothesized that the type and degree of diatom physiological stress are vital aspects of ecosystem state that drive export. To test this hypothesis, combined investigator expertise in phytoplankton physiology, genomics, and trace element chemistry is used to assess the rates of nutrient use and the genetic composition and response of diatom communities, with measurements of silicon and iron stress to evaluate stress as a predictor of the path of diatom carbon export. The EXPORTS field campaign in the North Atlantic sampled a retentive eddy over nearly a month in May 2021, which coincided with the decline of the North Atlantic Spring Bloom. 
    more » « less