One of the most popular existing models for task allocation in ant colonies is the so-called threshold-based task allocation model. Here, each ant has a fixed, and possibly distinct, threshold. Each task has a fixed demand which represents the number of ants required to perform the task.1Thestimulusanant receives for a task is defined as the demand of the task minus the number of ants currently working at the task. An ant joins a task if the stimulus of the task exceeds the ant’s threshold.A large body of results has studied this model for over four decades; however, most of the theoretical works focuses on the study of two tasks. Interestingly, no work in this line of research shows that the number of ants working at a task eventually converges towards the demand nor does any work bound the distance to the demands over time.In this work, we study precisely this convergence. Our results show that while the threshold-based model works fine in the case of two tasks (for certain distributions of thresholds); the threshold model no longer works for the case of more than two tasks. In fact, we show that there is no possible setting of thresholds that yields a satisfactory deficit (demand minus number of ants working on the task) for each task.This is in stark contrast to other theoretical results in the same setting [CDLN14] that rely on state-machines, i.e., some form of small memory together with probabilistic decisions. Note that, the classical threshold model assumes no states or memory (apart from the bare minimum number of states required to encode which task an ant is working on). The resulting task allocation is near-optimal and much better than what is possible using joining thresholds. This remains true even in a noisy environment [DLM+18]. While the deficit is not the only important metric, it is conceivably one of the most important metrics to guarantee the survival of a colony: for example if the number of workers assigned for foraging stays significantly below the demand, then starvation may occur. Moreover, our results do not imply that ants do not use thresholds; we merely argue that relying on thresholds yields a considerable worse performance.
more »
« less
Self-Stabilizing Task Allocation in Spite of Noise
We study the problem of distributed task allocation by workers in an ant colony in a setting of limited capabilities and noisy environment feedback. We assume that each task has a demand that should be satisfied but not exceeded, i.e., there is an optimal number of ants that should be working on this task at a given time. The goal is to assign a near-optimal number of workers to each task in a distributed manner without explicit access to the value of the demand nor to the number of ants working on the task. We seek to answer the question of how the quality of task allocation depends on the accuracy of assessing by the ants whether too many (overload) or not enough (lack) ants are currently working on a given task. In our model, each ant receives a binary feedback that depends on the deficit, defined as the difference between the demand and the current number of workers in the task. The feedback is modeled as a random variable that takes values lack or overload with probability given by a sigmoid function of the deficit. The higher the overload or lack of workers for a task, the more likely it is that an ant receives the correct feedback from this task; the closer the deficit is to zero, the less reliable the feedback becomes. Each ant receives the feedback independently about one chosen task. We measure the performance of task allocation algorithms using the notion of inaccuracy, defined as the number of steps in which the deficit of some task is beyond certain threshold. We propose a simple, constant-memory, self-stabilizing, distributed algorithm that converges from any initial assignment to a near-optimal assignment under noisy feedback and keeps the deficit small for all tasks in almost every step. We also prove a lower bound for any constant-memory algorithm, which matches, up to a constant factor, the accuracy achieved by our algorithm.
more »
« less
- PAR ID:
- 10228796
- Date Published:
- Journal Name:
- 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by Temnothorax ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an O( log n) lower bound on the running time of our proposed house-hunting algorithm, where n is the number of ants. Furthermore, we show a matching upper bound of expected O( log n) rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest quality or a quorum rule can affect the emigration process.more » « less
-
Efficient allocation of tasks to workers is a central problem in crowdsourcing. In this paper, we consider a special setting inspired by spatial crowdsourcing platforms where both workers and tasks arrive dynamically. Additionally, we assume all tasks are heterogeneous and each worker-task assignment brings a known reward. The natural challenge lies in how to incorporate the uncertainty in the arrivals from both workers and tasks into our online allocation policy such that the total expected reward is maximized. To formulate this, we assume the arrival patterns of worker “types” and task “types” can be predicted from historical data. Specifically, we consider a finite time horizon T and assume that in each time-step, a single worker and task are sampled (i.e., “arrive”) from two respective distributions independently, and that this sampling process repeats identically and independently for the entire T online time-steps. Our model, called Online Task Assignment with Two-Sided Arrival (OTA-TSA), is a significant generalization of the classical online task assignment where the set of tasks is assumed to be available offline. For the general version of OTA-TSA, we present an optimal non-adaptive algorithm which achieves an online competitive ratio of 0.295. For the special case of OTA-TSA where the reward is a function of just the worker type, we present an improved algorithm (which is adaptive) and achieves a competitive ratio of at least 0.343. On the hardness side, along with showing that the ratio obtained by our non-adaptive algorithm is the best possible among all non-adaptive algorithms, we further show that no (adaptive) algorithm can achieve a ratio better than 0.581 (unconditionally), even for the special case of OTA-TSA with homogenous tasks (i.e., all rewards are the same). At the heart of our analysis lies a new technical tool (which is a refined notion of the birth-death process), called the two-stage birth-death process, which may be of independent interest. Finally, we perform numerical experiments on two real-world datasets obtained from crowdsourcing platforms to complement our theoretical results.more » « less
-
We consider multi-robot service scenarios, where tasks appear at any time and in any location of the working area. A solution to such a service task problem requires finding a suitable task assignment and a collision-free trajectory for each robot of a multi-robot team. In cluttered environments, such as indoor spaces with hallways, those two problems are tightly coupled. We propose a decentralized algorithm for simultaneously solving both problems, called Hierarchical Task Assignment and Path Finding (HTAPF). HTAPF extends a previous bio-inspired Multi-Robot Task Allocation (MRTA) framework [1]. In this work, task allocation is performed on an arbitrarily deep hierarchy of work areas and is tightly coupled with a fully distributed version of the priority-based planning paradigm [12], using only broadcast communication. Specifically, priorities are assigned implicitly by the order in which data is received from nearby robots. No token passing procedure or specific schedule is in place ensuring robust execution also in the presence of limited probabilistic communication and robot failures.more » « less
-
null (Ed.)This paper studies the distributed linearly separable computation problem, which is a generalization of many existing distributed computing problems such as distributed gradient coding and distributed linear transform. A master asks N distributed workers to compute a linearly separable function of K datasets, which is a set of Kc linear combinations of K equal-length messages (each message is a function of one dataset). We assign some datasets to each worker in an uncoded manner, who then computes the corresponding messages and returns some function of these messages, such that from the answers of any Nr out of N workers the master can recover the task function with high probability. In the literature, the specific case where Kc = 1 or where the computation cost is minimum has been considered. In this paper, we focus on the general case (i.e., general Kc and general computation cost) and aim to find the minimum communication cost. We first propose a novel converse bound on the communication cost under the constraint of the popular cyclic assignment (widely considered in the literature), which assigns the datasets to the workers in a cyclic way. Motivated by the observation that existing strategies for distributed computing fall short of achieving the converse bound, we propose a novel distributed computing scheme for some system parameters. The proposed computing scheme is optimal for any assignment when Kc is large and is optimal under the cyclic assignment when the numbers of workers and datasets are equal or Kc is small. In addition, it is order optimal within a factor of 2 under the cyclic assignment for the remaining cases.more » « less
An official website of the United States government

