The combined effects of compact TiO2 (c-TiO2) electron-transport layer (ETL) are investigated without and with mesoscopic TiO2 (m-TiO2) on top, and without and with an iodine-terminated silane self-assembled monolayer (SAM), on the mechanical behavior, opto–electronic properties, photovoltaic (PV) performance, and operational-stability of solar cells based on metal-halide perovskites (MHPs). The interfacial toughness increases almost threefold in going from c-TiO2 without SAM to m-TiO2 with SAM. This is attributed to the synergistic effect of the m-TiO2/MHP nanocomposite at the interface and the enhanced adhesion afforded by the iodine-terminated silane SAM. The combination of m-TiO2 and SAM also offers a significant beneficial effect on the photocarriers extraction at the ETL/MHP interface, resulting in perovskite solar cells (PSCs) with power-conversion efficiency (PCE) of over 24% and 20% for 0.1 and 1 cm2 active areas, respectively. These PSCs also have exceptionally long operational-stability lives: extrapolated T80 (duration at 80% initial PCE retained) is ≈18 000 and 10 000 h for 0.1 and 1 cm2 active areas, respectively. Postmortem characterization and analyses of the operational-stability-tested PSCs are performed to elucidate the possible mechanisms responsible for the long operational-stability.
more »
« less
Interfacial toughening with self-assembled monolayers enhances perovskite solar cell reliability
Iodine-terminated self-assembled monolayer (I-SAM) was used in perovskite solar cells (PSCs) to achieve a 50% increase of adhesion toughness at the interface between the electron transport layer (ETL) and the halide perovskite thin film to enhance mechanical reliability. Treatment with I-SAM also increased the power conversion efficiency from 20.2% to 21.4%, reduced hysteresis, and improved operational stability with a projected T80 (time to 80% initial efficiency retained) increasing from ~700 hours to 4000 hours under 1-sun illumination and with continuous maximum power point tracking. Operational stability–tested PSC without SAMs revealed extensive irreversible morphological degradation at the ETL/perovskite interface, including voids formation and delamination, whereas PSCs with I-SAM exhibited minimal damage accumulation. This difference was attributed to a combination of a decrease in hydroxyl groups at the interface and the higher interfacial toughness.
more »
« less
- Award ID(s):
- 2002158
- PAR ID:
- 10228801
- Date Published:
- Journal Name:
- Science
- Volume:
- 372
- Issue:
- 6542
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 618 to 622
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The work proposed here aims to describe the dynamics of photoexcited charge carriers at the interface between the perovskite and electron transport layer (ETL) in perovskite solar cells (PSCs) and the effect that the interface morphology has on these dynamics. This is done in an effort to further develop the understanding of these materials so that their chemical composition and morphology may be better utilized to improve PSCs by means of increasing the power conversion efficiency (PCE), maximizing the chemical stability of PSCs to lengthen their lifespan, finding the cheapest and easiest materials to synthesize which have beneficial properties in photovoltaics, etc. This is done by using density functional theory to model the interface and open system Redfield theory to describe the charge carrier dynamics. We find that the charge transfer characteristics at the perovskite/ETL interface depend greatly on the choice of ligands adsorbed on the ETL that act as a bridge between the perovskite and ETL. The two ligand choices discussed here go so far as to determine whether the system will undergo a Förster energy transfer or a Dexter energy transfer upon photoexcitation.more » « less
-
Although C60is usually the electron transport layer (ETL) in inverted perovskite solar cells, its molecular nature of C60leads to weak interfaces that lead to non-ideal interfacial electronic and mechanical degradation. Here, we synthesized an ionic salt from C60, 4-(1',5′-dihydro-1'-methyl-2'H-[5,6] fullereno-C60-Ih-[1,9-c]pyrrol-2'-yl) phenylmethanaminium chloride (CPMAC), and used it as the electron shuttle in inverted PSCs. The CH2-NH3+head group in the CPMA cation improved the ETL interface and the ionic nature enhanced the packing, leading to ~3-fold increase in the interfacial toughness compared to C60. Using CPMAC, we obtained ~26% power conversion efficiencies (PCEs) with ~2% degradation after 2,100 hours of 1-sun operation at 65°C. For minimodules (four subcells, 6 centimeters square), we achieved the PCE of ~23% with <9% degradation after 2,200 hours of operation at 55°C.more » « less
-
Mechanical failure and chemical degradation of device heterointerfaces can strongly influence the long-term stability of perovskite solar cells (PSCs) under thermal cycling and damp heat conditions. We report chirality-mediated interfaces based onR-/S-methylbenzyl-ammonium between the perovskite absorber and electron-transport layer to create an elastic yet strong heterointerface with increased mechanical reliability. This interface harnesses enantiomer-controlled entropy to enhance tolerance to thermal cycling–induced fatigue and material degradation, and a heterochiral arrangement of organic cations leads to closer packing of benzene rings, which enhances chemical stability and charge transfer. The encapsulated PSCs showed retentions of 92% of power-conversion efficiency under a thermal cycling test (−40°C to 85°C; 200 cycles over 1200 hours) and 92% under a damp heat test (85% relative humidity; 85°C; 600 hours).more » « less
-
The long‐term operational stability of perovskite solar cells (PSCs) remains a key challenge impeding their commercialization, particularly due to ambient environments (e.g., moisture, oxygen, heat)‐induced degradation. Carbon electrode‐based PSCs have emerged as cost‐effective and relatively stable alternatives to metal electrode‐based devices due to carbon materials' hydrophobic behavior, yet they still lag in both long‐term durability and power conversion efficiency (PCE). In this work, an ultrathin hydrophobic ligand‐modified core–shell Cd(S,Se)/ZnS quantum dots (QDs) capping layer is introduced as a multifunctional interfacial modifier for carbon‐electrode‐based PSCs. This oleic acid ligand‐modified QDs capping layer exhibits inherent hydrophobicity, effectively serving as a moisture barrier to retard perovskite degradation under ambient conditions. Furthermore, the strong interfacial bonding between the QDs and perovskite halide surfaces leads to efficient trap state passivation, reducing trap density and creating a more uniform electrical contact. The modified QDs/perovskite interface also features an elevated conduction band edge, promoting improved charge extraction. As a result, devices incorporating this quantum dot capping layer retain 98% of their initial PCE after 450 h of ambient aging and achieve a champion efficiency of 20.74%. This strategy highlights the potential of hydrophobic ligand‐modified chalcogenide QDs as surface modifiers to enhance both the stability and performance of carbon‐based PSCs, offering a promising route toward scalable fabrication of durable perovskite solar modules.more » « less
An official website of the United States government

