skip to main content


Title: Fabrication of Porous Carbon Films and Their Impact on Carbon/Polypropylene Interfacial Bonding
Porous carbon films were generated by thermal treatment of polymer films made from poly(acrylonitrile-co-methyl acrylate)/polyethylene terephthalate (PAN/PET) blend. The precursor films were fabricated by a dip-coating process using PAN/PET solutions in hexafluoro-2-propanol (HFIP). A two-step process, including stabilization and carbonization, was employed to produce the carbon films. PET functioned as a pore former. Specifically, porous carbon films with thicknesses from 0.38–1.83 μm and pore diameters between 0.1–10 μm were obtained. The higher concentrations of PET in the PAN/PET mixture and the higher withdrawal speed during dip-coating caused the formation of larger pores. The thickness of the carbon films can be regulated using the withdrawal speed used in the dip-coating deposition. We determined that the deposition of the porous carbon film on graphite substrate significantly increases the value of the interfacial shear strength between graphite plates and thermoplastic PP. This study has shown the feasibility of fabrication of 3D porous carbon structure on the surface of carbon materials for increasing the interfacial strength. We expect that this approach can be employed for the fabrication of high-performance carbon fiber-thermoplastic composites.  more » « less
Award ID(s):
1655740
NSF-PAR ID:
10228900
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Composites Science
Volume:
5
Issue:
4
ISSN:
2504-477X
Page Range / eLocation ID:
108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  2. The displacement of a suspension of particles by an immiscible fluid in a capillary tube or in porous media is a canonical configuration that finds application in a large number of natural and industrial applications, including water purification, dispersion of colloids and microplastics, coating and functionalization of tubings. The influence of particles dispersed in the fluid on the interfacial dynamics and on the properties of the liquid film left behind remain poorly understood. Here, we study the deposition of a coating film on the walls of a capillary tube induced by the translation of a suspension plug pushed by air. We identify the different deposition regimes as a function of the translation speed of the plug, the particle size, and the volume fraction of the suspension. The thickness of the coating film is characterized, and we show that similarly to dip coating, three coating regimes are observed, liquid only, heterogeneous, and thick films. We also show that, at first order, the thickness of films thicker than the particle diameter can be predicted using the effective viscosity of the suspension. Nevertheless, we also report that for large particles and concentrated suspensions, a shear-induced migration mechanism leads to local variations in volume fraction and modifies the deposited film thickness and composition. 
    more » « less
  3. null (Ed.)
    Abstract This work seeks to develop a fundamental understanding of slot-die coating as a nanoparticle bed deposition mechanism for a microscale selective laser sintering (μ-SLS) process. The specific requirements of the μ-SLS process to deposit uniform sub-5 μm metal nanoparticle films while enabling high throughput fabrication make the slot-die coating process a strong candidate for layer-by-layer deposition. The key challenges of a coating system are to enable uniform nanoparticle ink deposition in an intermittent layer-by-layer manner. Identifying the experimental parameters to achieve this using a slot-die coating process is difficult. Therefore, the main contribution of this study is to develop a framework to predict the wet film thickness and onset of coating defects by simulating the experimental conditions of the μ-SLS process. The single-layer deposition characteristics and the operational window for the slot-die coating setup have been investigated through experiments and two-dimensional computational fluid dynamics simulations. The effect of coating parameters such as inlet speed, coating speed, and coating gap on the wet film thickness has been analyzed. For inlet speeds higher than the coating speed, it was found that the meniscus was susceptible to high instabilities leading to coating defects. Additionally, the study outlines the conditions for which the stability of the menisci upstream and downstream of the slot-die coater can affect the uniformity and thickness range of the coating. 
    more » « less
  4. Abstract

    Geological storage of carbon dioxide (CO2) in depleted gas reservoirs represents a cost-effective solution to mitigate global carbon emissions. The surface chemistry of the reservoir rock, pressure, temperature, and moisture content are critical factors that determine the CO2 adsorption capacity and storage mechanisms. Shale-gas reservoirs are good candidates for this application. However, the interactions of CO2 and organic content still need further investigation. The objectives of this paper are to (i) experimentally investigate the effect of pressure and temperature on the CO2 adsorption capacity of activated carbon, (ii) quantify the nanoscale interfacial interactions between CO2 and the activated carbon surface using Monte Carlo molecular modeling, and (iii) quantify the correlation between the adsorption isotherms of activated carbon-CO2 system and the actual carbon dioxide adsorption on shale-gas rock at different temperatures and geochemical conditions. Activated carbon is used as a proxy for kerogen. The objectives aim at obtaining a better understanding of the behavior of CO2 injection and storage into shale-gas formations.

    We performed experimental measurements and Grand Canonical Monte Carlo (GCMC) simulations of CO2 adsorption onto activated carbon. The experimental work involved measurements of the high-pressure adsorption capacity of activated carbon using pure CO2 gas. Subsequently, we performed a series of GCMC simulations to calculate CO2 adsorption capacity on activated carbon to validate the experimental results. The simulated activated carbon structure consists of graphite sheets with a distance between the sheets equal to the average actual pore size of the activated carbon sample. Adsorption isotherms were calculated and modeled for each temperature value at various pressures.

    The adsorption of CO2 on activated carbon is favorable from the energy and kinetic point of view. This is due to the presence of a wide micro to meso pore sizes that can accommodate a large amount of CO2 particles. The results of the experimental work show that excess adsorption results for gas mixtures lie in between the results for pure components. The simulation results agree with the experimental measurements. The strength of CO2 adsorption depends on both surface chemistry and pore size of activated carbon. Once strong adsorption sites within nanoscale network are established, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. The outcomes of this paper provides new insights about the parameters affecting CO2 adsorption and storage in shale-gas reservoirs, which is critical for developing standalone representative models for CO2 adsorption on pure organic carbon.

     
    more » « less
  5. Abstract

    Metal‐carbon nanotube (CNT) hybrid fibers are emerging materials for light‐weight conductors that can replace common metallic conductors. One of the main challenges to their development is the poor affinity between CNT and metals. In this work, a new approach for fabrication of CNT/Cu core‐shell fibers is demonstrated that outperforms the commercial Cu wires in terms of specific conductivity, ampacity, and strength. By introducing thiol groups to the surface of CNT fibers, a dense Cu coating with enhanced adhesion is obtained. Consequently, CNT/Cu core‐shell fibers with specific conductivity of 3.6 × 107S m−1and tensile strength of 1 GPa, which is almost five times higher than commercial Cu wires, are produced. Due to strong interaction of thiol functional groups and Cu atoms, the fiber can preserve its integrity and conductivity after >500 fatigue bending cycles. Furthermore, the ampacity of the composite wire reaches to 1.04 × 105A cm−2, which corresponds to a specific ampacity two times higher than that of commercial Cu wires. The interfacial design between Cu and CNT presented here is versatile and can be implemented in other processing and deposition methods.

     
    more » « less