skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data report: isotopic records for carbonate and organic fractions from IODP Expedition 369, Hole U1515A
Isotopic measurements of organic carbon (δ13Corg), carbonate carbon (δ13Ccarb), and oxygen (δ18Ocarb) were made at low stratigraphic resolution on samples from International Ocean Discovery Program (IODP) Expedition 369, Hole U1515A (southeast Indian Ocean). The δ13Corg values ranged from −30.2‰ to −21.0‰, with an average of −24‰ ± 2‰, whereas δ13Ccarb values ranged from 0.5‰ to 1.4‰ with an average of 1.1‰ ± 0.3‰. Carbonate δ18Ocarb values averaged 1.1‰ ± 0.8‰ and ranged from −0.3‰ to 2.4‰. Initial plans were to use the δ13Ccarb and δ13Corg profiles to identify changes in the carbon cycle at the site and to compare local patterns to global records; however, poor core recovery and lack of solid age control limited the number of suitable samples and precluded meaningful interpretation of stratigraphic patterns.  more » « less
Award ID(s):
1326927
PAR ID:
10229110
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Volume:
369
ISSN:
2377-3189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A presumed link between carbon isotopic trends and sea level change features prominently in many studies of epicontinental carbonates. In these shallow marine environments, a combination of basin restriction, burial/oxidation of organic carbon, proximity to terrestrial carbon sources, carbonate mineralogy, and/or meteoric influence can result in δ13Ccarb records that are distinct from that of the open ocean. Because many of these processes are linked to sea level change, it has been argued that sea level might exert a significant and systematic control on the δ13Ccarb records from epicontinental settings. Multiple studies have attempted to document sea level's influence on carbon isotopic trends, but they do so with only limited constraints on sea level change and without objective evaluations of interpreted trends and relationships. We argue that the complex and complicated set of processes influencing carbon isotopic values in epicontinental settings requires a systematic approach to truly address the question of sea level's influence on δ13Ccarb. Only by integrating carbon isotopic records with a detailed sedimentological and sequence stratigraphic framework can we properly track changes in depositional environments and reconstruct the transgressive-regressive history of the rocks. Trends and relationships in these robust datasets can be evaluated with rank correlation tests specifically designed and empirically tested to deal with noisy datasets. In short, we map a possible path forward for systematic testing of the relationship between sea level and δ13Ccarb. 
    more » « less
  2. The Lower Mississippian Lodgepole Formation of Montana and Wyoming records one of the largest positive carbon isotopic excursions of the Phanerozoic. This globally recognized up to 7‰ increase in δ13Ccarb values occurs across the North American Kinderhookian-Osagean boundary (referred to as the K-O excursion). It has been argued to reflect significant organic carbon burial, possibly linked to the onset of the Late Paleozoic Ice Age. Previously proposed correlations between carbon isotopic patterns and the sequence stratigraphic framework within these strata suggests that changes in sea level could have played a significant role in the expression and/or magnitude of the K-O excursion in the Madison Shelf. This study explores the relationship between carbon isotopic values and sea level change at multiple scales. To accomplish this, we provide a comprehensive overview of the sedimentological and stratigraphic framework and address uncertainty about the number of sequences in the Lodgepole Formation. Our results support a three-sequence model for the Lodgepole Formation. Based on the number of sequences and the placement of sequence stratigraphic surfaces, we see little evidence of statistically significant correlation between carbon isotopic trends and the sequence stratigraphic framework. We argue that sea level change was not the primary driving mechanism for carbon isotopic trends in the Madison Shelf, nor the K-O excursion. Instead, we support models that invoke global ocean anoxia and/or destabilization of the global carbon cycle due to land plants. 
    more » « less
  3. We describe, interpret, and establish a stratotype for the Frenchman Mountain Dolostone (FMD), a new Cambrian stratigraphic unit that records key global geochemical and climate signals and is well exposed throughout the Grand Canyon and central Basin and Range, USA. This flat-topped carbonate platform deposit is the uppermost unit of the Tonto Group, replacing the informally named “undifferentiated dolomites.” The unit records two global chemostratigraphic events—the Drumian Carbon Isotope Excursion (DICE), when δ13Ccarb (refers to “marine carbonate rocks”) values in the FMD dropped to −2.7‰, and the Steptoean Positive Carbon Isotope Excursion (SPICE), when the values rose to +3.5‰. The formation consists of eight lithofacies deposited in shallow subtidal to peritidal paleoenvironments. At its stratotype at Frenchman Mountain, Nevada, the FMD is 371 m thick. Integration of regional trilobite biostratigraphy and geochronology with new stratigraphy and sedimentology of the FMD, together with new δ13Ccarb chemostratigraphy for the entire Cambrian succession at Frenchman Mountain, illustrates that the FMD spans ~7.2 m.y., from Miaolingian (lower Drumian, Bolaspidella Zone) to Furongian (Paibian, Dicanthopyge Zone) time. To the west, the unit correlates with most of the Banded Mountain Member of the ~1100-m-thick Bonanza King Formation. To the east, at Grand Canyon’s Palisades of the Desert, the FMD thins to 8 m due to pre–Middle Devonian erosion that cut progressively deeper cratonward. Portions of the FMD display visually striking, meter-scale couplets of alternating dark- and light-colored peritidal facies, while other portions consist of thick intervals of a single peritidal or shallow subtidal facies. Statistical analysis of the succession of strata in the stratotype section, involving Markov order and runs order analyses, yields no evidence of cyclicity or other forms of order. Autocyclic processes provide the simplest mechanism to have generated the succession of facies observed in the FMD. 
    more » « less
  4. While it remains uncertain whether excursions in the stable carbon isotopic composition of Ediacaran marine carbonate (δ13Ccarb) represent globally synchronous events (or a direct measure of ocean carbon cycling), the absence of widely distributed and readily preservable fauna, and the presence of several iconic carbon isotope excursions (CIEs), has sustained δ13Ccarb correlation as the primary means to establish relative time relationships for Ediacaran successions. Here we present an Ediacaran global δ13Ccarb composite built with a dynamic time warping (DTW) time-normalization algorithm that generates libraries of least-squares alignments between chemostratigraphic records of unequal length and distinct sediment accumulation rates. When developing a δ13Ccarb composite for each of 16 globally distributed Ediacaran paleo-depositional regions, we selected high Pearson r alignments that conformed with published geological guidance about the correlation of constituent sections. When applying DTW to align these regional algorithmic composites into one global δ13Ccarb stack, we selected alignments that allied the excursions that field workers have established (or speculated) are the Marinoan cap carbonate excursion, the Shuram excursion, and/or the basal Cambrian excursion. There are strengths and weaknesses to making explicit the temporal relationships (point-to-point correspondences) often left implicit in visual correlation. One strength is to extrapolate depositional ages by means of isotopic correlation, and here we explored this with a Bayesian Markov chain Monte Carlo age model that predicts a median age, and uncertainty, for every carbonate stratum in the global Ediacaran δ13Ccarb composite. Yet, one must caution against a false accuracy that can arise from selecting one alignment among many possibilities––the likelihood that time-uncertain time series can be stretched and squeezed into one unequivocal alignment is low. Thus, while these alignments are grounded in the expert assessment of the field worker, this global Ediacaran δ13Ccarb–Bayesian age model should be viewed as a working hypothesis to enrich, but not arbitrate, discussions of the correlation, synchrony, and completeness of Ediacaran successions. 
    more » « less
  5. The Steptoean Positive Carbon Isotope Excursion (SPICE) event at ca. 497−494 Ma was a major carbon-cycle perturbation of the late Cambrian that coincided with rapid diversity changes among trilobites. Several scenarios (e.g., climatic/oceanic cooling and seawater anoxia) have been proposed to account for an extinction of trilobites at the onset of SPICE, but the exact mechanism remains unclear. Here, we present a chemostratigraphic study of carbonate carbon and carbonate-associated sulfate sulfur isotopes (δ13Ccarb and δ34SCAS) and elemental redox proxies (UEF, MoEF, and Corg/P), augmented by secular trilobite diversity data, from both upper slope (Wangcun) and lower slope (Duibian) successions from the Jiangnan Slope, South China, spanning the Drumian to lower Jiangshanian. Redox data indicate locally/regionally well-oxygenated conditions throughout the SPICE event in both study sections except for low-oxygen (hypoxic) conditions within the rising limb of the SPICE (early-middle Paibian) at Duibian. As in coeval sections globally, the reported δ13Ccarb and δ34SCAS profiles exhibit first-order coupling throughout the SPICE event, reflecting co-burial of organic matter and pyrite controlled by globally integrated marine productivity, organic preservation rates, and shelf hypoxia. Increasing δ34SCAS in the “Early SPICE” interval (late Guzhangian) suggests that significant environmental change (e.g., global-oceanic hypoxia) was under way before the global carbon cycle was markedly affected. Assessment of trilobite range data within a high-resolution biostratigraphic framework for the middle-late Cambrian facilitated re-evaluation of the relationship of the SPICE to contemporaneous biodiversity changes. Trilobite diversity in South China declined during the Early SPICE (corresponding to the End-Marjuman Biomere Extinction, or EMBE, of Laurentia) and at the termination of the SPICE (corresponding to the End-Steptoean Biomere Extinction, or ESBE, of Laurentia), consistent with biotic patterns from other cratons. We infer that oxygen minimum zone and/or shelf hypoxia expanded as a result of locally enhanced productivity due to intensified upwelling following climatic cooling, and that expanded hypoxia played a major role in the EMBE at the onset of SPICE. During the SPICE event, global-ocean ventilation promoted marine biotic recovery, but termination of SPICE-related cooling in the late Paibian may have reduced global-ocean circulation, triggering further redox changes that precipitated the ESBE. Major changes in both marine environmental conditions and trilobite diversity during the late Guzhangian demonstrate that the SPICE event began earlier than the Guzhangian-Paibian boundary, as previously proposed. 
    more » « less