Abstract Coral reefs support the world’s most diverse marine ecosystem and provide invaluable goods and services for millions of people worldwide. They are however experiencing frequent and intensive marine heatwaves that are causing coral bleaching and mortality. Coarse-grained climate models predict that few coral reefs will survive the 3 °C sea-surface temperature rise in the coming century. Yet, field studies show localized pockets of coral survival and recovery even under high-temperature conditions. Quantifying recovery from marine heatwaves is central to making accurate predictions of coral-reef trajectories into the near future. Here we introduce the world’s most comprehensive database on coral recovery following marine heatwaves and other disturbances, called Heatwaves and Coral-Recovery Database (HeatCRD) encompassing 29,205 data records spanning 44 years from 12,266 sites, 83 countries, and 160 data sources. These data provide essential information to coral-reef scientists and managers to best guide coral-reef conservation efforts at both local and regional scales.
more »
« less
Designing a blueprint for coral reef survival
Maintaining coral reef ecosystems is a social imperative, because so many people depend on coral reefs for food production, shoreline protection, and livelihoods. The survival of reefs this century, however, is threatened by the mounting effects of climate change. Climate mitigation is the foremost and essential action to prevent coral reef ecosystem collapse. Without it, reefs will become extremely diminished within the next 20–30 years. Even with strong climate mitigation, however, existing conservation measures such as marine protected areas and fisheries management are no longer sufficient to sustain the ecosystem and many additional and innovative actions to increase reef resilience must also be taken. In this paper we assess the suite of protections and actions in terms of their potential to be effective according to a set of criteria that include effectiveness, readiness, co-benefits and disbenefits. Even with the best scientific innovation, saving coral reefs will require a well-funded, well-designed, and rapidly executed strategy with political and social commitments at the level of other grand challenges.
more »
« less
- Award ID(s):
- 1736736
- PAR ID:
- 10229820
- Date Published:
- Journal Name:
- Biological conservation
- Volume:
- 257
- ISSN:
- 0006-3207
- Page Range / eLocation ID:
- 109107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine‐protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014–2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.more » « less
-
Abstract Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs.more » « less
-
null (Ed.)Anthropogenic climate change and environmental degradation destroy coral reefs, the ecosystem services they provide, and the livelihoods of close to a billion people who depend on these services. Restoration approaches to increase the resilience of corals are therefore necessary to counter environmental pressures relevant to climate change projections. In this Review, we examine the natural processes that can increase the adaptive capacity of coral holobionts, with the aim of preserving ecosystem functioning under future ocean conditions. Current approaches that centre around restoring reef cover can be integrated with emerging approaches to enhance coral stress resilience and, thereby, allow reefs to regrow under a new set of environmental conditions. Emerging approaches such as standardized acute thermal stress assays, selective sexual propagation, coral probiotics, and environmental hardening could be feasible and scalable in the real world. However, they must follow decision-making criteria that consider the different reef, environmental, and ecological conditions. The implementation of adaptive interventions tailored around nature-based solutions will require standardized frameworks, appropriate ecological risk–benefit assessments, and analytical routines for consistent and effective utilization and global coordination.more » « less
-
null (Ed.)Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs.more » « less
An official website of the United States government

