A detailed chemical understanding of H2 interactions with binding sites in the nanoporous crystalline structure of metal–organic frameworks (MOFs) can lay a sound basis for the design of new sorbent materials. Computational quantum chemical calculations can aid in this quest. To set the stage, we review general thermodynamic considerations that control the usable storage capacity of a sor- bent. We then discuss cluster modeling of H2 ligation at MOF binding sites using state-of-the-art density functional theory (DFT) calculations, and how the binding can be understood using energy decomposition analysis (EDA). Employing these tools, we illustrate the connections between the character of the MOF binding site and the associated adsorption thermodynamics using four experi- mentally characterized MOFs, highlighting the role of open metal sites (OMSs) in accessing binding strengths relevant to room temperature storage. The sorbents are MOF-5, with no open metal sites, Ni2(m-dobdc), containing Lewis acidic Ni(II) sites, Cu(I)-MFU-4l, containing π basic Cu(I) sites and V2Cl2.8(btdd), also containing π-basic V(II) sites. We next explore the potential for binding multiple H2 molecules at a single metal site, with thermodynamics useful for storage at ambient temperature; a materials design goal which has not yet been experimentally demonstrated. Computations on Ca2+ or Mg2+ bound to catecholate or Ca2+ bound to porphyrin show the potential for binding up to 4 H2; there is precedent for the inclusion of both catecholate and porphyrin motifs in MOFs. Turning to transition metals, we discuss the prediction that two H2 molecules can bind at V(II)-MFU-4l, a material that has been synthesized with solvent coordinated to the V(II) site. Additional calculations demonstrate binding three equivalents of hydrogen per OMS in Sc(I) or Ti(I)-exchanged MFU-4l. Overall, the results suggest promising prospects for experimentally realizing higher capacity hydrogen storage MOFs, if nontrivial synthetic and desolvation challenges can be overcome. Coupled with the unbounded chemical diversity of MOFs, there is ample scope for additional exploration and discovery.
more »
« less
Cu(I/II) Metal–Organic Frameworks Incorporated Nanofiltration Membranes for Organic Solvent Separation
Copper-based metal–organic frameworks (MOFs) with different oxidation states and near-uniform particle sizes have been successfully synthesized. Mixed-matrix polyimide membranes incorporating 0.1–7 wt% of Cu(II) benzene-1,2,5-tricarboxylic acid (Cu(II)BTC), Cu(I/II)BTC and Cu(I) 1,2-ethanedisulfonic acid (EDS) (Cu(I)EDS) MOFs were fabricated via non-solvent-induced phase inversion process. These membranes are found to be solvent resistant and mechanically stable. Liquid phase nanofiltration experiments were performed to separate toluene from n-heptane at room temperature. These membranes demonstrate preferential adsorption and permeation of the aromatic toluene over aliphatic n-heptane. The amount of MOF particles incorporated, the oxidation state of the Cu ion and membrane, and barrier layer thickness have a significant impact on the separation factor. Toluene/heptane separation factor at 1.47, 1.67 and 1.79 can be obtained for membranes incorporating 7 wt% Cu(II)BTC, Cu(I/II)BTC and Cu(I)EDS respectively at room temperature.
more »
« less
- Award ID(s):
- 1822101
- PAR ID:
- 10229857
- Date Published:
- Journal Name:
- Membranes
- Volume:
- 10
- Issue:
- 11
- ISSN:
- 2077-0375
- Page Range / eLocation ID:
- 313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution.more » « less
-
null (Ed.)Nanosheet-based MFI membranes, known to be highly selective for hydrocarbon isomer separations, exhibit an NH 3 /N 2 mixture separation factor of 2236 with NH 3 permeance of 1.1 × 10 −6 mol m −2 s −1 Pa −1 , and NH 3 /H 2 separation factor of 307 with NH 3 permeance of 2.3 × 10 −6 mol m −2 s −1 Pa −1 at room temperature. Consistent with a competitive sorption-based separation, lower operating temperatures and higher pressures result in increased separation factor. At 323 K, with an equimolar mixed feed of NH 3 /N 2 , the fluxes and separation factors at 3 and 7 bar are 0.13 mol m −2 s −1 and 191, and 0.26 mol m −2 s −1 and 220, respectively. This performance compares favorably with that of other membranes and suggests that MFI membranes can be used in separation and purification processes involving mixtures of NH 3 /N 2 /H 2 encountered in ammonia synthesis and utilization. The membranes also exhibit high performance for the separation of ethane, n -propane and n -butane from H 2 .more » « less
-
Abstract Electrochemical applications of metal organic frameworks (MOFs) are of considerable current interest. Due to the large surface area exposed to solution, MOFs are potentially useful electrode materials for sensing inner‐sphere analytes, such as reactive oxygen species. Herein, we electrodeposited copper benzene tricarboxylate MOF (HKUST‐1) into the cavity of an open carbon nanopipette (CNP) to produce a CNP‐MOF nanoelectrode. Unlike electronically conductive metal or carbon electrodes, the electrochemical response of CNP–MOFs relies on oxidation/reduction of Cu(I)/Cu(II) nodes in the porous nanostructure. Nevertheless, sigmoidal steady‐state voltammograms with a well‐defined plateau current have been recorded for simple redox mediators, for example, ferrocenemethanol. A linear calibration curve obtained for the hydrogen peroxide reduction suggests that CNP–MOFs can potentially be useful as nanosensors for peroxide.more » « less
-
The development of new two-dimensional (2D) d-π conjugated metal-organic frameworks (MOFs) holds great promise for the construction of a new generation of porous and semiconductive materials. This paper describes the synthesis, structural characterization, and electronic properties of a new d-π conjugated 2D MOF based on the use of a new ligand 2,3,8,9,14,15-hexahydroxytrinaphthylene. The reticular self-assembly of this large π-conjugated organic building block with Cu(II) ions in a mixed solvent system of 1,3-dimethyl-2-imidazolidinone (DMI) and H2O with the addition of ammonia water or ethylenediamine leads to a highly crystalline MOF Cu3(HHTN)2, which possesses pore aperture of 2.5 nm. Cu3(HHTN)2 MOF shows moderate electrical conductivity of 9.01 × 10−8 S·cm−1 at 385 K and temperature-dependent band gap ranging from 0.75 to 1.65 eV. After chemical oxidation by I2, the conductivity of Cu3(HHTN)2 can be increased by 360 times. This access to HHTN based MOF adds an important member to previously reported MOF systems with hexagonal lattice, paving the way towards systematic studies of structure-property relationships of semiconductive MOFs.more » « less
An official website of the United States government

