skip to main content

Title: Oceanic eddy-induced modifications to air–sea heat and CO2 fluxes in the Brazil-Malvinas Confluence
Abstract

Sea surface temperature (SST) anomalies caused by a warm core eddy (WCE) in the Southwestern Atlantic Ocean (SWA) rendered a crucial influence on modifying the marine atmospheric boundary layer (MABL). During the first cruise to support the Antarctic Modeling and Observation System (ATMOS) project, a WCE that was shed from the Brazil Current was sampled. Apart from traditional meteorological measurements, we used the Eddy Covariance method to directly measure the ocean–atmosphere sensible heat, latent heat, momentum, and carbon dioxide (CO2) fluxes. The mechanisms of pressure adjustment and vertical mixing that can make the MABL unstable were both identified. The WCE also acted to increase the surface winds and heat fluxes from the ocean to the atmosphere. Oceanic regions at middle and high latitudes are expected to absorb atmospheric CO2, and are thereby considered as sinks, due to their cold waters. Instead, the presence of this WCE in midlatitudes, surrounded by predominantly cold waters, caused the ocean to locally act as a CO2source. The contribution to the atmosphere was estimated as 0.3 ± 0.04 mmol m−2day−1, averaged over the sampling period. The CO2transfer velocity coefficient (K) was determined using a quadratic fit and showed an adequate representation of ocean–atmosphere fluxes. The more » ocean–atmosphere CO2, momentum, and heat fluxes were each closely correlated with the SST. The increase of SST inside the WCE clearly resulted in larger magnitudes of all of the ocean–atmosphere fluxes studied here. This study adds to our understanding of how oceanic mesoscale structures, such as this WCE, affect the overlying atmosphere.

« less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2022868
Publication Date:
NSF-PAR ID:
10229949
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Colwellia psychrerythraea34H is a model psychrophilic bacterium found in the cold ocean—polar sediments, sea ice, and the deep sea. Although the genomes of such psychrophiles have been sequenced, their metabolic strategies at low temperature have not been quantified. We measured the metabolic fluxes and gene expression of 34H at 4 °C (the mean global-ocean temperature and a normal-growth temperature for 34H), making comparative analyses at room temperature (above its upper-growth temperature of 18 °C) and with mesophilicEscherichia coli. When grown at 4 °C, 34H utilized multiple carbon substrates without catabolite repression or overflow byproducts; its anaplerotic pathways increased flux networkmore »flexibility and enabled CO2fixation. In glucose-only medium, the Entner–Doudoroff (ED) pathway was the primary glycolytic route; in lactate-only medium, gluconeogenesis and the glyoxylate shunt became active. In comparison,E. coli, cold stressed at 4 °C, had rapid glycolytic fluxes but no biomass synthesis. At their respective normal-growth temperatures, intracellular concentrations of TCA cycle metabolites (α-ketoglutarate, succinate, malate) were 4–17 times higher in 34H than inE. coli, while levels of energy molecules (ATP, NADH, NADPH) were 10- to 100-fold lower. Experiments withE. colimutants supported the thermodynamic advantage of the ED pathway at cold temperature. Heat-stressed 34H at room temperature (2 hours) revealed significant down-regulation of genes associated with glycolytic enzymes and flagella, while 24 hours at room temperature caused irreversible cellular damage. We suggest that marine heterotrophic bacteria in general may rely upon simplified metabolic strategies to overcome thermodynamic constraints and thrive in the cold ocean.

    « less
  2. Abstract

    Carbon isotope minima were a ubiquitous feature in the mid-depth (1.5–2.5 km) Atlantic during Heinrich Stadial 1 (HS1, 14.5–17.5 kyr BP) and the Younger Dryas (YD, 11.6–12.9 kyr BP), with the most likely driver being collapse of the Atlantic Meridional Overturning Circulation (AMOC). Negative carbon isotope anomalies also occurred throughout the surface ocean and atmosphere, but their timing relative to AMOC collapse and the underlying drivers have remained unclear. Here we evaluate the lead-lag relationship between AMOC variability and surface oceanδ13C signals using high resolution benthic and planktonic stable isotope records from two Brazil Margin cores (located at 1.8more »km and 2.1 km water depth). In each case, the decrease in benthicδ13C during HS1 leads planktonicδ13C by 800 ± 200 years. Because the records are based on the same samples, the relative timing is constrained by the core stratigraphy. Our results imply that AMOC collapse initiates a chain of events that propagates through the oceanic carbon cycle in less than 1 kyr. Direct comparison of planktonic foraminiferal and atmospheric records implies a portion of the surface oceanδ13C signal can be explained by temperature-dependent equilibration with a13C-depleted atmosphere, with the remainder due to biological productivity, input of carbon from the abyss, or reduced air-sea equilibration.

    « less
  3. Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere–ocean Hg0HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant andmore »that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the  ∼ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0+HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII–organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM–ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China with little bias (0–30%). It reproduces qualitatively the observed maximum in US deposition around the Gulf of Mexico, reflecting a combination of deep convection and availability of NO2 and HO2 radicals for second-stage HgBr oxidation. However, the magnitude of this maximum is underestimated. The relatively low observed Hg wet deposition over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80% of HgII deposition is to the global oceans, reflecting the marine origin of Br and low concentrations of organic aerosols for HgII reduction. Most of that deposition takes place to the tropical oceans due to the availability of HO2 and NO2 for second-stage HgBr oxidation.

    « less
  4. Meridional heat transport (MHT) is analyzed in ensembles of coupled climate models simulating climate states ranging from the Last Glacial Maximum (LGM) to quadrupled CO2. MHT is partitioned here into atmospheric (AHT) and implied oceanic (OHT) heat transports. In turn, AHT is partitioned into dry and moist energy transport by the meridional overturning circulation (MOC), transient eddy energy transport (TE), and stationary eddy energy transport (SE) using only monthly averaged model output that is typically archived. In all climate models examined, the maximum total MHT (AHT + OHT) is nearly climate-state invariant, except for a modest (4%, 0.3 PW) enhancementmore »of MHT in the Northern Hemisphere (NH) during the LGM. However, the partitioning of MHT depends markedly on the climate state, and the changes in partitioning differ considerably among different climate models. In response to CO2quadrupling, poleward implied OHT decreases, while AHT increases by a nearly compensating amount. The increase in annual-mean AHT is a smooth function of latitude but is due to a spatially inhomogeneous blend of changes in SE and TE that vary by season. During the LGM, the increase in wintertime SE transport in the NH midlatitudes exceeds the decrease in TE resulting in enhanced total AHT. Total AHT changes in the Southern Hemisphere (SH) are not significant. These results suggest that the net top-of-atmosphere radiative constraints on total MHT are relatively invariant to climate forcing due to nearly compensating changes in absorbed solar radiation and outgoing longwave radiation. However, the partitioning of MHT depends on detailed regional and seasonal factors.

    « less
  5. Future emissions of greenhouse gases into the atmosphere are projected to result in significant circulation changes. One of the most important changes is the widening of the tropical belt, which has great societal impacts. Several mechanisms (changes in surface temperature, eddy phase speed, tropopause height, and static stability) have been proposed to explain this widening. However, the coupling between these mechanisms has precluded elucidating their relative importance. Here, the abrupt quadrupled-CO2simulations of phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to examine the proposed mechanisms. The different time responses of the different mechanisms allow us to disentanglemore »and evaluate them. As suggested by earlier studies, the Hadley cell edge is found to be linked to changes in subtropical baroclinicity. In particular, its poleward shift is accompanied by an increase in subtropical static stability (i.e., a decrease in temperature lapse rate) with increased CO2concentrations. These subtropical changes also affect the eddy momentum flux, which shifts poleward together with the Hadley cell edge. Transient changes in tropopause height, eddy phase speed, and surface temperature, however, were found not to accompany the poleward shift of the Hadley cell edge. The widening of the Hadley cell, together with the increase in moisture content, accounts for most of the expansion of the dry zone. Eddy moisture fluxes, on the other hand, are found to play a minor role in the expansion of the dry zone.

    « less