skip to main content


Title: Optimal prediction with resource constraints using the information bottleneck
Responding to stimuli requires that organisms encode information about the external world. Not all parts of the input are important for behavior, and resource limitations demand that signals be compressed. Prediction of the future input is widely beneficial in many biological systems. We compute the trade-offs between representing the past faithfully and predicting the future using the information bottleneck approach, for input dynamics with different levels of complexity. For motion prediction, we show that, depending on the parameters in the input dynamics, velocity or position information is more useful for accurate prediction. We show which motion representations are easiest to re-use for accurate prediction in other motion contexts, and identify and quantify those with the highest transferability. For non-Markovian dynamics, we explore the role of long-term memory in shaping the internal representation. Lastly, we show that prediction in evolutionary population dynamics is linked to clustering allele frequencies into non-overlapping memories.  more » « less
Award ID(s):
1734030 1652617
NSF-PAR ID:
10230569
Author(s) / Creator(s):
; ; ;
Editor(s):
Faisal, Aldo A
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
17
Issue:
3
ISSN:
1553-7358
Page Range / eLocation ID:
e1008743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice‐bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short‐term dynamics of glacier basal motion (<10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (>50 year) timescales—this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field and satellite data at Athabasca Glacier and show that the glacier thinned by 60 m (−21%) over 1961–2020. However, a concurrent increase in surface slope results in minimal change in the average driving stress (−6 kPa and −4%). These geometric changes coincide with relatively uniform slowing (−15 m a−1and −45%). Simplified ice modeling suggests that declining basal motion accounts for most of this slow down (91% on average and 46% at minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through a more efficient subglacial hydrologic system. These results highlight the need to include time‐varying dynamics of basal motion in glacier models and analyses. If these findings are generalizable, they suggest that declining basal motion reduces the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate.

     
    more » « less
  2. Legged robots with point or small feet are nearly impossible to control instantaneously but are controllable over the time scale of one or more steps, also known as step-to-step control. Previous approaches achieve step-to-step control using optimization by (1) using the exact model obtained by integrating the equations of motion, or (2) using a linear approximation of the step-to-step dynamics. The former provides a large region of stability at the expense of a high computational cost while the latter is computationally cheap but offers limited region of stability. Our method combines the advantages of both. First, we generate input/output data by simulating a single step. Second, the input/output data is curve fitted using a regression model to get a closed-form approximation of the step-to-step dynamics. We do this model identification offline. Next, we use the regression model for online optimal control. Here, using the spring-load inverted pendulum model of hopping, we show that both parametric (polynomial and neural network) and non-parametric (gaussian process regression) approximations can adequately model the step-to-step dynamics. We then show this approach can stabilize a wide range of initial conditions fast enough to enable real-time control. Our results suggest that closed-form approximation of the step-to-step dynamics provides a simple accurate model for fast optimal control of legged robots. 
    more » « less
  3. Abstract

    Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient’s home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844–0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.

     
    more » « less
  4. Abstract

    Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.

     
    more » « less
  5. null (Ed.)
    Thermal fields exist widely in engineering systems and are critical for engineering operation, product quality and system safety in many industries. An accurate prediction of thermal field distribution, that is, acquiring any location of interest in a thermal field at the present and future time, is essential to provide useful information for the surveillance, maintenance, and improvement of a system. However, thermal field prediction using data acquired from sensor networks is challenging due to data sparsity and missing data problems. To address this issue, we propose a field spatiotemporal prediction approach based on transfer learning techniques by studying the dynamics of a 3D thermal field from multiple homogeneous fields. Our model characterizes the spatiotemporal dynamics of the local thermal field variations by considering the spatiotemporal correlation of the fields and harnessing the information from homogeneous fields to acquire an accurate thermal field distribution in the future. A real case study of thermal fields during grain storage is conducted to validate our proposed approach. Grain thermal field prediction results provide a deep insight of grain quality during storage, which is helpful for the manager of grain storage to make further decisions about grain quality control and maintenance. 
    more » « less