Abstract Water mass transformation (WMT) in the North Atlantic plays a key role in driving the Atlantic Meridional Overturning Circulation (AMOC) and its variability. Here, we analyze subpolar North Atlantic WMT in high‐ and low‐resolution versions of the Community Earth System Model version 1 (CESM1) and investigate whether differences in resolution and climatological WMT impact low‐frequency AMOC variability and the atmospheric response to this variability. We find that high‐resolution simulations reproduce the WMT found in a reanalysis‐forced high‐resolution ocean simulation more accurately than low‐resolution simulations. We also find that the low‐resolution simulations, including one forced with the same atmospheric reanalysis data, have larger biases in surface heat fluxes, sea‐surface temperatures, and salinities compared to the high‐resolution simulations. Despite these major climatological differences, the mechanisms of low‐frequency AMOC variability are similar in the high‐ and low‐resolution versions of CESM1. The Labrador Sea WMT plays a major role in driving AMOC variability, and a similar North Atlantic Oscillation‐like sea‐level pressure pattern leads AMOC changes. However, the high‐resolution simulation shows a pronounced atmospheric response to the AMOC variability not found in the low‐resolution version. The consistent role of Labrador Sea WMT in low‐frequency AMOC variability across high‐ and low‐resolution coupled simulations, including a simulation which accurately reproduces the WMT found in an atmospheric‐reanalysis‐forced high‐resolution ocean simulation, suggests that the mechanisms may be similar in nature.
more »
« less
Mechanisms of Low-Frequency Variability in North Atlantic Ocean Heat Transport and AMOC
Abstract Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.
more »
« less
- PAR ID:
- 10230743
- Date Published:
- Journal Name:
- Journal of Climate
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 1 to 68
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air-sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air-sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin.more » « less
-
Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer.more » « less
-
We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection.more » « less
-
Abstract A large part of the variability in the Atlantic meridional overturning circulation (AMOC) and thus uncertainty in its estimates on interannual time scales comes from atmospheric synoptic eddies and mesoscale processes. In this study, a suite of experiments with a 1/12° regional configuration of the MITgcm is performed where low-pass filtering is applied to surface wind forcing to investigate the impact of subsynoptic (<2 days) and synoptic (2–10 days) atmospheric processes on the ocean circulation. Changes in the wind magnitude and hence the wind energy input in the region have a significant effect on the strength of the overturning; once this is accounted for, the magnitude of the overturning in all sensitivity experiments is very similar to that of the control run. Synoptic and subsynoptic variability in atmospheric winds reduce the surface heat loss in the Labrador Sea, resulting in anomalous advection of warm and salty waters into the Irminger Sea and lower upper-ocean densities in the eastern subpolar North Atlantic. Other effects of high-frequency variability in surface winds on the AMOC are associated with changes in Ekman convergence in the midlatitudes. Synoptic and subsynoptic winds also impact the strength of the boundary currents and density structure in the subpolar North Atlantic. In the Labrador Sea, the overturning strength is more sensitive to the changes in density structure, whereas in the eastern subpolar North Atlantic, the role of density is comparable to that of the strength of the East Greenland Current. Significance StatementA key issue in understanding how well the Atlantic meridional overturning circulation is simulated in climate models is determining the impact of synoptic (2–10 days) and subsynoptic (shorter) wind variability on ocean circulation. We find that the greatest impact of wind changes on the strength of the overturning is through changes in energy input from winds to the ocean. Variations in winds have a more modest impact via changes in heat loss over the Labrador Sea, alongside changes in wind-driven surface currents. This study highlights the importance of accurately representing the density in the Labrador Sea, and both the strength and density structure of the East Greenland Current, for the correct representation of overturning circulation in climate models.more » « less
An official website of the United States government

