skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Role of Air-sea Fluxes and Ocean Surface Density in the Production of Deep Waters in the Eastern Subpolar Gyre of the North Atlantic
Wintertime convection in the North Atlantic Ocean is a key component of the global climate as it produces dense waters at high latitudes that flow equatorward as part of the Atlantic Meridional Overturning Circulation (AMOC). Recent work has highlighted the dominant role of the Irminger and Iceland basins in the production of North Atlantic Deep Water. Dense water formation in these basins is mainly explained by buoyancy forcing that transforms surface waters to the deep waters of the AMOC lower limb. Air-sea fluxes and the ocean surface density field are both key determinants of the buoyancy-driven transformation. We analyze these contributions to the transformation in order to better understand the connection between atmospheric forcing and the densification of surface water. More precisely, we study the impact of air-sea fluxes and the ocean surface density field on the transformation of subpolar mode water (SPMW) in the Iceland Basin, a water mass that “pre-conditions” dense water formation downstream. Analyses using 40 years of observations (1980–2019) reveal that the variance in SPMW transformation is mainly influenced by the variance in density at the ocean surface. This surface density is set by a combination of advection, wind-driven upwelling and surface fluxes. Our study shows that the latter explains ∼ 30 % of the variance in outcrop area as expressed by the surface area between the outcropped SPMW isopycnals. The key role of the surface density in SPMW transformation partly explains the unusually large SPMW transformation in winter 2014–2015 over the Iceland Basin.  more » « less
Award ID(s):
1948335
PAR ID:
10314735
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ocean science
ISSN:
1812-0784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A recent study using the first 21 months of the OSNAP time series revealed that the export of dense waters in the eastern subpolar North Atlantic―as part of the Atlantic Meridional Overturning Circulation (MOC)―can be almost wholly attributed to surface‐forced water mass transformation (SFWMT) in the Irminger and Iceland basins, thus suggesting a minor role for other means of transformation, such as diapycnal mixing. To understand whether this result is valid over a period that exceeds the current observational record, we use four different ocean reanalysis products to investigate the relationship between surface buoyancy forcing and dense water production in this region. We also reexplore this relationship with the now available 6‐year OSNAP time series. Our analysis finds that although surface transformation in the eastern subpolar gyre dominates the production of deep waters, mixing processes downstream of the Greenland Scotland Ridge are also responsible for the production of waters carried within the AMOC's lower limb both in the observations and reanalyses. Further analysis of the reanalyses shows that SFWMT partly explains MOC interannual variability, the remaining portion can be attributed to basin storage and mixing. Compared to the observations, the reanalyses exhibit stronger MOC variance but comparable SFWMT variance on interannual timescales. 
    more » « less
  2. Abstract The Atlantic Meridional Overturning Circulation (AMOC), a key mechanism in the climate system, delivers warm and salty waters from the subtropical gyre to the subpolar gyre and Nordic Seas, where they are transformed into denser waters flowing southward in the lower AMOC limb. The prevailing hypothesis is that dense waters formed in the Labrador and Nordic Seas are the sources for the AMOC lower limb. However, recent observations reveal that convection in the Labrador Sea contributes minimally to the total overturning of the subpolar gyre. In this study, we show that the AMOC is instead primarily composed of waters formed in the Nordic Seas and Irminger and Iceland basins. A first direct estimate of heat and freshwater fluxes over these basins demonstrates that buoyancy forcing during the winter months can almost wholly account for the dense waters of the subpolar North Atlantic that are exported as part of the AMOC. 
    more » « less
  3. Abstract. The overturning streamfunction as measured at the OSNAP (Overturning in the Subpolar North Atlantic Program) mooring array represents the transformation of warm, salty Atlantic Water into cold, fresh North Atlantic Deep Water (NADW). The magnitude of the overturning at the OSNAP array can therefore be linked to the transformation by air–sea buoyancy fluxes and mixing in the region north of the OSNAP array. Here, we estimate these water mass transformations using observational-based, reanalysis-based and model-based datasets. Our results highlight that air–sea fluxes alone cannot account for the time-mean magnitude of the overturning at OSNAP, and therefore a residual mixing-driven transformation is required to explain the difference. A cooling by air–sea heat fluxes and a mixing-driven freshening in the Nordic Seas, Iceland Basin and Irminger Sea precondition the warm, salty Atlantic Water, forming subpolar mode water classes in the subpolar North Atlantic. Mixing in the interior of the Nordic Seas, over the Greenland–Scotland Ridge and along the boundaries of the Irminger Sea and Iceland Basin drive a water mass transformation that leads to the convergence of volume in the water mass classes associated with NADW. Air–sea buoyancy fluxes and mixing therefore play key and complementary roles in setting the magnitude of the overturning within the subpolar North Atlantic and Nordic Seas. This study highlights that, for ocean and climate models to realistically simulate the overturning circulation in the North Atlantic, the small-scale processes that lead to the mixing-driven formation of NADW must be adequately represented within the model's parameterisation scheme. 
    more » « less
  4. Abstract We investigate the impact of Arctic sea ice loss on the Atlantic meridional overturning circulation (AMOC) and North Atlantic climate in a coupled general circulation model (IPSL‐CM5A2) perturbation experiment, wherein Arctic sea ice is reduced until reaching an equilibrium of an ice‐free summer. After several decades we observe AMOC weakening caused by reduced dense water formation in the Iceland basin due to the warming of surface waters, and later compensated by intensification of dense water formation in the Western Subpolar North Atlantic. Consequently, AMOC slightly weakens in deep, dense waters but recovers through shallower, less dense waters overturning. In parallel, wind‐driven intensification and southeastward expansion of the subpolar gyre cause a depth‐extended cold anomaly ∼2°C around 50°N that resembles the North Atlantic “warming hole.” We conclude that compensating dense water formations drive AMOC changes following sea ice retreat and that a warming hole can develop independently of the AMOC modulation. 
    more » « less
  5. Abstract We investigate how the ocean responds to 10-yr persistent surface heat flux forcing over the subpolar North Atlantic (SPNA) associated with the observed winter NAO in three CMIP6-class coupled models. The experiments reveal a broadly consistent ocean response to the imposed NAO forcing. Positive NAO forcing produces anomalously dense water masses in the SPNA, increasing the southward lower (denser) limb of the Atlantic meridional overturning circulation (AMOC) in density coordinates. The southward propagation of the anomalous dense water generates a zonal pressure gradient overlying the models’ North Atlantic Current that enhances the upper (lighter) limb of the density-space AMOC, increasing the heat and salt transport into the SPNA. However, the amplitude of the thermohaline process response differs substantially between the models. Intriguingly, the anomalous dense-water formation is not primarily driven directly by the imposed flux anomalies, but rather dominated by changes in isopycnal outcropping area and associated changes in surface water mass transformation (WMT) due to the background surface heat fluxes. The forcing initially alters the outcropping area in dense-water formation regions, but WMT due to the background surface heat fluxes through anomalous outcropping area decisively controls the total dense-water formation response and can explain the intermodel amplitude difference. Our study suggests that coupled models can simulate consistent mechanisms and spatial patterns of decadal SPNA variability when forced with the same anomalous buoyancy fluxes, but the amplitude of the response depends on the background states of the models. 
    more » « less