A<sc>bstract</sc> We compute the differential cross-section for direct quarkonium production accompanied by a gluon in high-energy deep inelastic scattering (DIS) at small-x. We employ the Non-Relativistic QCD factorization framework, focusing on theS-wave contribution to the formation of the quarkonium, and including both color singlet and octet contributions. Our short distance coefficients for the production of the heavy quark pair are obtained within the Color Glass Condensate effective field theory. Our results pave the way towards the next-to-leading order computation of direct quarkonium in DIS, as well as the study of azimuthal correlations of direct quarkonium and jet.
more »
« less
Power expansion for heavy quarkonium production at next-to-leading order in e+e− annihilation
A bstract We study heavy quarkonium production associated with gluons in e + e − annihilation as an illustration of the perturbative QCD (pQCD) factorization approach, which incorporates the first nonleading power in the energy of the produced heavy quark pair. We show how the renormalization of the four-quark operators that define the heavy quark pair fragmentation functions using dimensional regularization induces “evanescent” operators that are absent in four dimensions. We derive closed forms for short-distance coefficients for quark pair production to next-to-leading order ( $$ {\alpha}_s^2 $$ α s 2 ) in the relevant color singlet and octet channels. Using non-relativistic QCD (NRQCD) to calculate the heavy quark pair fragmentation functions up to v 4 in the velocity expansion, we derive analytical results for the differential energy fraction distribution of the heavy quarkonium. Calculations for $$ {}^3{S}_1^{\left[1\right]} $$ 3 S 1 1 and $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 channels agree with analogous NRQCD analytical results available in the literature, while several color-octet calculations of energy fraction distributions are new. We show that the remaining corrections due to the heavy quark mass fall off rapidly in the energy of the produced state. To explore the importance of evolution at energies much larger than the mass of the heavy quark, we solve the renormalization group equation perturbatively to two-loop order for the $$ {}^1{S}_0^{\left[8\right]} $$ 1 S 0 8 case.
more »
« less
- Award ID(s):
- 1915093
- PAR ID:
- 10230796
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2020
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rothkopf, A.; Brambilla, N.; Tolos, L.; Tranberg, A.; Kurkela, A.; Roehrich, D.; Andersen, J.O.; Tywoniuk, K.; Antonov, D.; Greensite, J. (Ed.)We report the current understanding of heavy quarkonium production at high transverse momentum ( p T ) in hadronic collisions in terms of QCD factorization. In this presentation, we highlight the role of subleading power corrections to heavy quarkonium production, which are essential to describe the p T spectrum of quarkonium at a relatively lower p T . We also introduce prescription to match QCD factorization to fixed-order NRQCD factorization calculations for quarkonium production at low p T .more » « less
-
null (Ed.)A bstract The p T -differential production cross sections of prompt and non-prompt (produced in beauty-hadron decays) D mesons were measured by the ALICE experiment at midrapidity ( | y | < 0 . 5) in proton-proton collisions at $$ \sqrt{s} $$ s = 5 . 02 TeV. The data sample used in the analysis corresponds to an integrated luminosity of (19 . 3 ± 0 . 4) nb − 1 . D mesons were reconstructed from their decays D 0 → K − π + , D + → K − π + π + , and $$ {\mathrm{D}}_{\mathrm{s}}^{+}\to \upphi {\uppi}^{+}\to {\mathrm{K}}^{-}{\mathrm{K}}^{+}{\uppi}^{+} $$ D s + → ϕ π + → K − K + π + and their charge conjugates. Compared to previous measurements in the same rapidity region, the cross sections of prompt D + and $$ {\mathrm{D}}_{\mathrm{s}}^{+} $$ D s + mesons have an extended p T coverage and total uncertainties reduced by a factor ranging from 1.05 to 1.6, depending on p T , allowing for a more precise determination of their p T -integrated cross sections. The results are well described by perturbative QCD calculations. The fragmentation fraction of heavy quarks to strange mesons divided by the one to non-strange mesons, f s / ( f u + f d ), is compatible for charm and beauty quarks and with previous measurements at different centre-of-mass energies and collision systems. The $$ \mathrm{b}\overline{\mathrm{b}} $$ b b ¯ production cross section per rapidity unit at midrapidity, estimated from non-prompt D-meson measurements, is $$ \mathrm{d}{\sigma}_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y\left|{}_{\left|\mathrm{y}\right|<0.5}=34.5\pm 2.4{\left(\mathrm{stat}\right)}_{-2.9}^{+4.7}\left(\mathrm{tot}.\mathrm{syst}\right)\right. $$ d σ b b ¯ / d y y < 0.5 = 34.5 ± 2.4 stat − 2.9 + 4.7 tot . syst μb. It is compatible with previous measurements at the same centre-of-mass energy and with the cross section pre- dicted by perturbative QCD calculations.more » « less
-
A bstract A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton–proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron–muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb − 1 at $$ \sqrt{s} $$ s = 7 TeV and about 20 fb − 1 at $$ \sqrt{s} $$ s = 8 TeV for each experiment. The combined cross-sections are determined to be 178 . 5 ± 4 . 7 pb at $$ \sqrt{s} $$ s = 7 TeV and $$ {243.3}_{-5.9}^{+6.0} $$ 243.3 − 5.9 + 6.0 pb at $$ \sqrt{s} $$ s = 8 TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be R 8 / 7 = 1 . 363 ± 0 . 032. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $$ {m}_t^{\textrm{pole}}={173.4}_{-2.0}^{+1.8} $$ m t pole = 173.4 − 2.0 + 1.8 GeV and $$ {\alpha}_{\textrm{s}}\left({m}_Z\right)={0.1170}_{-0.0018}^{+0.0021} $$ α s m Z = 0.1170 − 0.0018 + 0.0021 .more » « less
-
We compute the differential cross section for direct quarkonium production in high-energy electron-nucleus collisions at small . Our computation is performed within the nonrelativistic QCD factorization formalism that separates the calculation into short distance coefficients and long distance matrix elements that depend on the color and spin of the state. We obtain the short distance coefficients of the production of the heavy quark pair within the framework of the color glass condensate effective field theory, which resums coherent multiple interactions of the heavy quark pair with the nucleus to all orders. Our results are expressed as the convolution of perturbatively calculable functions with multipoint lightlike Wilson line correlators. In the correlation limit, we establish the correspondence between our color glass condensate formulation with calculations employing the transverse momentum dependent (TMD) framework. We extend this correspondence by resumming kinematic power corrections within the improved TMD framework, which interpolates between the TMD formalism and -factorization formalism. We present a detailed numerical analysis, focusing on production in the kinematics accessible at the future Electron-Ion Collider, highlighting the importance of genuine higher-order saturation contributions when the electron collides with a large nucleus. Our results are also valid in the photoproduction limit where we expect the largest contribution from genuine higher-order saturation contributions which could be accessed in ultraperipheral collisions of relativistic heavy ions. Published by the American Physical Society2024more » « less
An official website of the United States government

