Learning interpretable representations in an unsupervised setting is an important yet a challenging task. Existing unsupervised interpretable methods focus on extracting independent salient features from data. However they miss out the fact that the entanglement of salient features may also be informative. Acknowledging these entanglements can improve the interpretability, resulting in extraction of higher quality and a wider variety of salient features. In this paper, we propose a new method to enable Generative Adversarial Networks (GANs) to discover salient features that may be entangled in an informative manner, instead of extracting only disentangled features. Specifically, we propose a regularizer to punish the disagreement between the extracted feature interactions and a given dependency structure while training. We model these interactions using a Bayesian network, estimate the maximum likelihood parameters and calculate a negative likelihood score to measure the disagreement. Upon qualitatively and quantitatively evaluating the proposed method using both synthetic and real-world datasets, we show that our proposed regularizer guides GANs to learn representations with disentanglement scores competing with the state-of-the-art, while extracting a wider variety of salient features.
more » « less- NSF-PAR ID:
- 10231709
- Date Published:
- Journal Name:
- Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence
- Page Range / eLocation ID:
- 1970 to 1976
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Disentangled generative models map a latent code vector to a target space, while enforcing that a subset of the learned latent codes are interpretable and associated with distinct properties of the target distribution. Recent advances have been dominated by Variational AutoEncoder (VAE)-based methods, while training disentangled generative adversarial networks (GANs) remains challenging. In this work, we show that the dominant challenges facing disentangled GANs can be mitigated through the use of self-supervision. We make two main contributions: first, we design a novel approach for training disentangled GANs with self-supervision. We propose contrastive regularizer, which is inspired by a natural notion of disentanglement: latent traversal. This achieves higher disentanglement scores than state-of-the-art VAE- and GAN-based approaches. Second, we propose an unsupervised model selection scheme called ModelCentrality, which uses generated synthetic samples to compute the medoid (multi-dimensional generalization of median) of a collection of models. The current common practice of hyper-parameter tuning requires using ground-truths samples, each labelled with known perfect disentangled latent codes. As real datasets are not equipped with such labels, we propose an unsupervised model selection scheme and show that it finds a model close to the best one, for both VAEs and GANs. Combining contrastive regularization with ModelCentrality, we improve upon the state-of-the-art disentanglement scores significantly, without accessing the supervised data.more » « less
-
Theunissen, Frédéric E. (Ed.)Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.more » « less
-
The label noise transition matrix, denoting the transition probabilities from clean labels to noisy labels, is crucial for designing statistically robust solutions. Existing estimators for noise transition matrices, e.g., using either anchor points or clusterability, focus on computer vision tasks that are relatively easier to obtain high-quality representations. We observe that tasks with lower-quality features fail to meet the anchor-point or clusterability condition, due to the coexistence of both uninformative and informative representations. To handle this issue, we propose a generic and practical information-theoretic approach to down-weight the less informative parts of the lower-quality features. This improvement is crucial to identifying and estimating the label noise transition matrix. The salient technical challenge is to compute the relevant information-theoretical metrics using only noisy labels instead of clean ones. We prove that the celebrated f-mutual information measure can often preserve the order when calculated using noisy labels. We then build our transition matrix estimator using this distilled version of features. The necessity and effectiveness of the proposed method are also demonstrated by evaluating the estimation error on a varied set of tabular data and text classification tasks with lower-quality features.more » « less
-
Node embedding is the task of extracting concise and informative representations of certain entities that are connected in a network. Various real-world networks include information about both node connectivity and certain node attributes, in the form of features or time-series data. Modern representation learning techniques employ both the connectivity and attribute information of the nodes to produce embeddings in an unsupervised manner. In this context, deriving embeddings that preserve the geometry of the network and the attribute vectors would be highly desirable, as they would reflect both the topological neighborhood structure and proximity in feature space. While this is fairly straightforward to maintain when only observing the connectivity or attribute information of the network, preserving the geometry of both types of information is challenging. A novel tensor factorization approach for node embedding in attributed networks is proposed in this paper, that preserves the distances of both the connections and the attributes. Furthermore, an effective and lightweight algorithm is developed to tackle the learning task and judicious experiments with multiple state-of-the-art baselines suggest that the proposed algorithm offers significant performance improvements in downstream tasks.more » « less
-
Abstract We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing “curve” skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.