skip to main content

Title: Bootstrapping Conditional GANs for Video Game Level Generation
Generative Adversarial Networks (GANs) have shown impressive results for image generation. However, GANs face challenges in generating contents with certain types of constraints, such as game levels. Specifically, it is difficult to generate levels that have aesthetic appeal and are playable at the same time. Additionally, because training data usually is limited, it is challenging to generate unique levels with current GANs. In this paper, we propose a new GAN architecture named Conditional Embedding Self-Attention Generative Adversarial Net- work (CESAGAN) and a new bootstrapping training procedure. The CESAGAN is a modification of the self-attention GAN that incorporates an embedding feature vector input to condition the training of the discriminator and generator. This allows the network to model non-local dependency between game objects, and to count objects. Additionally, to reduce the number of levels necessary to train the GAN, we propose a bootstrapping mechanism in which playable generated levels are added to the training set. The results demonstrate that the new approach does not only generate a larger number of levels that are playable but also generates fewer duplicate levels compared to a standard GAN.
Authors:
; ; ; ; ;
Award ID(s):
1717324
Publication Date:
NSF-PAR ID:
10231876
Journal Name:
IEEE Conference on Games
Page Range or eLocation-ID:
41 to 48
Sponsoring Org:
National Science Foundation
More Like this
  1. Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images givesmore »us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method.« less
  2. A Generative Adversarial Network (GAN) is an unsupervised generative framework to generate a sample distribution that is identical to the data distribution. Recently, mix strategy multi-generator/discriminator GANs have been shown to outperform single pair GANs. However, the mixed model suffers from the problem of linearly growing training time. Also, imbalanced training among generators makes it difficult to parallelize. In this paper, we propose a balanced mix-generator GAN that works in parallel by mixing multiple disjoint generators to approximate the real distribution. The weights of the discriminator and the classifier are controlled by a balance strategy. We also present an efficient loss function, to force each generator to embrace few modes with a high probability. Our model is naturally adaptive to large parallel computation frameworks. Each generator can be trained on multiple GPUs asynchronously. We have performed extensive experiments on synthetic datasets, MNIST1000, CIFAR-10, and ImageNet. The results establish that our model can achieve the state-of-the-art performance (in terms of the modes coverage and the inception score), with significantly reduced training time. We also show that the missing mode problem can be relieved with a growing number of generators.
  3. Abstract Objective

    Electronic medical records (EMRs) can support medical research and discovery, but privacy risks limit the sharing of such data on a wide scale. Various approaches have been developed to mitigate risk, including record simulation via generative adversarial networks (GANs). While showing promise in certain application domains, GANs lack a principled approach for EMR data that induces subpar simulation. In this article, we improve EMR simulation through a novel pipeline that (1) enhances the learning model, (2) incorporates evaluation criteria for data utility that informs learning, and (3) refines the training process.

    Materials and Methods

    We propose a new electronic health record generator using a GAN with a Wasserstein divergence and layer normalization techniques. We designed 2 utility measures to characterize similarity in the structural properties of real and simulated EMRs in the original and latent space, respectively. We applied a filtering strategy to enhance GAN training for low-prevalence clinical concepts. We evaluated the new and existing GANs with utility and privacy measures (membership and disclosure attacks) using billing codes from over 1 million EMRs at Vanderbilt University Medical Center.

    Results

    The proposed model outperformed the state-of-the-art approaches with significant improvement in retaining the nature of real records, including prediction performance andmore »structural properties, without sacrificing privacy. Additionally, the filtering strategy achieved higher utility when the EMR training dataset was small.

    Conclusions

    These findings illustrate that EMR simulation through GANs can be substantially improved through more appropriate training, modeling, and evaluation criteria.

    « less
  4. In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimated density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines.
  5. We present a new weakly supervised learning-based method for generating novel category-specific 3D shapes from unoccluded image collections. Our method is weakly supervised and only requires silhouette annotations from unoccluded, category-specific objects. Our method does not require access to the object's 3D shape, multiple observations per object from different views, intra-image pixel correspondences, or any view annotations. Key to our method is a novel multi-projection generative adversarial network (MP-GAN) that trains a 3D shape generator to be consistent with multiple 2D projections of the 3D shapes, and without direct access to these 3D shapes. This is achieved through multiple discriminators that encode the distribution of 2D projections of the 3D shapes seen from a different views. Additionally, to determine the view information for each silhouette image, we also train a view prediction network on visualizations of 3D shapes synthesized by the generator. We iteratively alternate between training the generator and training the view prediction network. We validate our multi-projection GAN on both synthetic and real image datasets. Furthermore, we also show that multi-projection GANs can aid in learning other high-dimensional distributions from lower dimensional training datasets, such as material-class specific spatially varying reflectance properties from images.