Generative adversarial networks (GANs) are powerful tools for learning generative models. In practice, the training may suffer from lack of convergence. GANs are commonly viewed as a two-player zero-sum game between two neural networks. Here, we leverage this game theoretic view to study the convergence behavior of the training process. Inspired by the fictitious play learning process, a novel training method, referred to as Fictitious GAN, is introduced. Fictitious GAN trains the deep neural networks using a mixture of historical models. Specifically, the discriminator (resp. generator) is updated according to the best-response to the mixture outputs from a sequence of previously trained generators (resp. discriminators). It is shown that Fictitious GAN can effectively resolve some convergence issues that cannot be resolved by the standard training approach. It is proved that asymptotically the average of the generator outputs has the same distribution as the data samples. 
                        more » 
                        « less   
                    
                            
                            Games of GANs: Game-theoretical models for generative adversarial networks
                        
                    
    
            Generative Adversarial Networks (GANs) have recently attracted considerable attention in the AI community due to their ability to generate high-quality data of significant statisti- cal resemblance to real data. Fundamentally, GAN is a game between two neural networks trained in an adversarial manner to reach a zero-sum Nash equilibrium profile. Despite the improvement accomplished in GANs in the last few years, several issues remain to be solved. This paper reviews the literature on the game-theoretic aspects of GANs and addresses how game theory models can address specific challenges of generative models and improve the GAN’s performance. We first present some preliminaries, including the basic GAN model and some game theory background. We then present a taxonomy to clas- sify state-of-the-art solutions into three main categories: modified game models, modified architectures, and modified learning methods. The classification is based on modifications made to the basic GAN model by proposed game-theoretic approaches in the literature. We then explore the objectives of each category and discuss recent works in each class. Finally, we discuss the remaining challenges in this field and present future research directions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1909562
- PAR ID:
- 10496092
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Artificial intelligence review
- ISSN:
- 0269-2821
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.more » « less
- 
            null (Ed.)Generative Adversarial Networks (GANs) have shown impressive results for image generation. However, GANs face challenges in generating contents with certain types of constraints, such as game levels. Specifically, it is difficult to generate levels that have aesthetic appeal and are playable at the same time. Additionally, because training data usually is limited, it is challenging to generate unique levels with current GANs. In this paper, we propose a new GAN architecture named Conditional Embedding Self-Attention Generative Adversarial Net- work (CESAGAN) and a new bootstrapping training procedure. The CESAGAN is a modification of the self-attention GAN that incorporates an embedding feature vector input to condition the training of the discriminator and generator. This allows the network to model non-local dependency between game objects, and to count objects. Additionally, to reduce the number of levels necessary to train the GAN, we propose a bootstrapping mechanism in which playable generated levels are added to the training set. The results demonstrate that the new approach does not only generate a larger number of levels that are playable but also generates fewer duplicate levels compared to a standard GAN.more » « less
- 
            In this paper, we present a simple approach to train Generative Adversarial Networks (GANs) in order to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this gap, we propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model and support both adversarial and likelihood framework in a joint training manner which diversify the estimated density in order to cover different modes. We propose to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator (student) of a GAN model. A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach. We conduct extensive experiments on real-world datasets (i.e., MNIST, CIFAR-10, STL-10) to demonstrate the effectiveness of the proposed HGAN under qualitative and quantitative evaluations. The experimental results show the superiority and competitiveness of our method compared to the baselines.more » « less
- 
            Generative adversarial networks (GANs) have recently been proposed as a potentially disruptive approach to generative design due to their remarkable ability to generate visually appealing and realistic samples. Yet, we show that the current generator-discriminator architecture inherently limits the ability of GANs as a design concept generation (DCG) tool. Specifically, we conduct a DCG study on a large-scale dataset based on a GAN architecture to advance the understanding of the performance of these generative models in generating novel and diverse samples. Our findings, derived from a series of comprehensive and objective assessments, reveal that while the traditional GAN architecture can generate realistic samples, the generated and style-mixed samples closely resemble the training dataset, exhibiting significantly low creativity. We propose a new generic architecture for DCG with GANs (DCG-GAN) that enables GAN-based generative processes to be guided by geometric conditions and criteria such as novelty, diversity and desirability. We validate the performance of the DCG-GAN model through a rigorous quantitative assessment procedure and an extensive qualitative assessment involving 89 participants. We conclude by providing several future research directions and insights for the engineering design community to realize the untapped potential of GANs for DCG.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    